1 |
4 |
ibrahimvar |
---------------------------------------------------------------------------------------------------------------------------------------------
|
2 |
|
|
-- OV7670 uses SCCB interface for configuring it's registers. That interface is compatible with I2C.
|
3 |
|
|
-- But unlike I2C, SCCB has logical-1 state on it's data line.
|
4 |
|
|
-- High - Low - High Impedance
|
5 |
|
|
--
|
6 |
|
|
-- The most important point of this interface is; ACK and NACK bits are useless in write mode. SCCB
|
7 |
|
|
-- uses a "Don't Care" bit. That bit is logical-0. You can see the data frame of a write process:
|
8 |
|
|
--
|
9 |
|
|
-- |A6|A5|A4|A3|A2|A1|A0|R/W|DC|-|R7|R6|R5|R4|R3|R2|R1|R0|DC|-|D7|D6|D5|D4|D3|D2|D1|D0|DC|
|
10 |
|
|
-- 7-bit Address 8-Bit Register/Data 8-bit Data
|
11 |
|
|
-- R => logical-1
|
12 |
|
|
-- W => logical-0
|
13 |
|
|
--
|
14 |
|
|
-- Warning: This module made for only writing data to registers. Read process will be added. :)
|
15 |
|
|
--
|
16 |
|
|
--
|
17 |
|
|
-- Used Sources : OV7670 Datasheet
|
18 |
|
|
-- : OmniVision SCCB Specification
|
19 |
|
|
-- : http://www.dejazzer.com/hardware.html (Face detection on FPGA: OV7670 CMOS camera + DE2-115 FPGA board)
|
20 |
|
|
-- : http://www.dejazzer.com/eigenpi/digital_camera/digital_camera.html
|
21 |
|
|
--
|
22 |
|
|
--
|
23 |
|
|
---------------------------------------------------------------------------------------------------------------------------------------------
|
24 |
|
|
|
25 |
|
|
|
26 |
|
|
library IEEE;
|
27 |
|
|
use IEEE.STD_LOGIC_1164.all;
|
28 |
|
|
use IEEE.STD_LOGIC_UNSIGNED.all;
|
29 |
|
|
use IEEE.NUMERIC_STD.all;
|
30 |
|
|
|
31 |
|
|
entity SCCBMaster is
|
32 |
|
|
generic(
|
33 |
|
|
GInputClock : integer := 50_000_000; -- FPGA main clock speed
|
34 |
|
|
GBusClock : integer := 400_000 -- Speed of SCCB clock to be used
|
35 |
|
|
);
|
36 |
|
|
port(
|
37 |
|
|
PIClock : in std_logic; -- System clock input
|
38 |
|
|
PIReset : in std_logic; -- Reset(active low) input
|
39 |
|
|
PIEnable : in std_logic; -- Enable input that enables the SCCB interface
|
40 |
|
|
PIAddress : in std_logic_vector(6 downto 0); -- SCCB slave device's address input
|
41 |
|
|
PIRegister : in std_logic_vector(7 downto 0); -- SCCB slave device's register input
|
42 |
|
|
PIWriteData : in std_logic_vector(7 downto 0); -- Data input
|
43 |
|
|
PIStart : in std_logic; -- Module's backend start input
|
44 |
|
|
PODone : out std_logic; -- Gives an logical-1 output when the process is complete
|
45 |
|
|
POReady : out std_logic; -- Output for determine SCCB line is ready for another operation
|
46 |
|
|
PIOSIOD : inout std_logic; -- SCCB serial data I/O
|
47 |
|
|
POSIOC : out std_logic -- SCCB clock output
|
48 |
|
|
);
|
49 |
|
|
end SCCBMaster;
|
50 |
|
|
|
51 |
|
|
architecture Behavioral of SCCBMaster is
|
52 |
|
|
|
53 |
|
|
------------------------------------------------------------------------------------------------------------------
|
54 |
|
|
-- In this step; signals and state machine states created for I/O ports and references.
|
55 |
|
|
------------------------------------------------------------------------------------------------------------------
|
56 |
|
|
|
57 |
|
|
type TStatesWrite is (idle, start_condition, send_addr, addr_dc, send_reg, reg_dc, send_data, data_dc, stop);
|
58 |
|
|
signal SStateWriteBase : TStatesWrite := idle;
|
59 |
|
|
|
60 |
|
|
constant CClockCountMax : integer := (GInputClock / GBusClock);
|
61 |
|
|
|
62 |
|
|
signal SStart : std_logic := '0';
|
63 |
|
|
signal SStartReg : std_logic := '0';
|
64 |
|
|
signal SStartedWrite : std_logic := '0';
|
65 |
|
|
|
66 |
|
|
signal SEnable : std_logic := '0';
|
67 |
|
|
signal SAddress : std_logic_vector(6 downto 0) := (others => '0');
|
68 |
|
|
signal SRegister : std_logic_vector(7 downto 0) := (others => '0');
|
69 |
|
|
signal SWriteData : std_logic_vector(7 downto 0) := (others => '0');
|
70 |
|
|
signal SBusy : std_logic := '0';
|
71 |
|
|
signal SBusy2 : std_logic := '0';
|
72 |
|
|
signal SDone : std_logic := '0';
|
73 |
|
|
signal SReady : std_logic := '0';
|
74 |
|
|
|
75 |
|
|
signal SDataClockRef : std_logic := '0';
|
76 |
|
|
signal SDataClockRefPrev : std_logic := '0';
|
77 |
|
|
|
78 |
|
|
-- signal SSIODClock : std_logic := '0'; -- DEBUG ONLY!
|
79 |
|
|
-- signal SSIODClockPrev : std_logic; -- DEBUG ONLY!
|
80 |
|
|
signal SSIOCClock : std_logic := '1';
|
81 |
|
|
signal SSIOCClockPrev : std_logic;
|
82 |
|
|
|
83 |
|
|
signal SSIODWrite : std_logic := '0';
|
84 |
|
|
signal SSIODRead : std_logic := '0';
|
85 |
|
|
signal SSIOCWrite : std_logic := '0';
|
86 |
|
|
signal SSIOCRead : std_logic := '0';
|
87 |
|
|
|
88 |
|
|
signal SAddr : std_logic_vector(6 downto 0) := (others => '0');
|
89 |
|
|
signal SReg : std_logic_vector(7 downto 0) := (others => '0');
|
90 |
|
|
signal SData : std_logic_vector(7 downto 0) := (others => '0');
|
91 |
|
|
|
92 |
|
|
signal SAddrReg : std_logic_vector(6 downto 0) := (others => '0');
|
93 |
|
|
signal SRegReg : std_logic_vector(7 downto 0) := (others => '0');
|
94 |
|
|
signal SDataReg : std_logic_vector(7 downto 0) := (others => '0');
|
95 |
|
|
signal SCounter : integer range 0 to 8 := 0;
|
96 |
|
|
|
97 |
|
|
signal SCounterSCCB : integer range 0 to CClockCountMax := 0;
|
98 |
|
|
signal SCounter2 : integer range 0 to 3 := 0;
|
99 |
|
|
|
100 |
|
|
|
101 |
|
|
begin
|
102 |
|
|
|
103 |
|
|
------------------------------------------------------------------------
|
104 |
|
|
-- In this part; the I/O ports are directed to according signals
|
105 |
|
|
------------------------------------------------------------------------
|
106 |
|
|
SStart <= PIStart;
|
107 |
|
|
SEnable <= PIEnable;
|
108 |
|
|
SAddress <= PIAddress;
|
109 |
|
|
SRegister <= PIRegister;
|
110 |
|
|
SWriteData <= PIWriteData;
|
111 |
|
|
PODone <= SDone;
|
112 |
|
|
POReady <= SReady;
|
113 |
|
|
|
114 |
|
|
POSIOC <= SSIOCWrite when (SStateWriteBase = idle or SStateWriteBase = start_condition or SStateWriteBase = stop ) else
|
115 |
|
|
SSIOCClock;
|
116 |
|
|
|
117 |
|
|
PIOSIOD <= SSIODWrite when SEnable = '1' else 'Z';
|
118 |
|
|
|
119 |
|
|
SStartReg <= '1' when SStart = '1' and SEnable = '1' else
|
120 |
|
|
'0' when (SSIOCClock = '0' and SSIOCClockPrev = '1') or PIReset = '0' or SEnable = '0' else
|
121 |
|
|
SStartReg;
|
122 |
|
|
|
123 |
|
|
-------------------------------------------------------------------------------------------------------------------------------
|
124 |
|
|
-- READY process; if write operation is over (SDone == '1') and write state machine is at start(SStateWriteBase == idle)
|
125 |
|
|
-- then it changes SReady to logic-1. And when the system at reset state(PIReset == '0') it changes SReady to logic-0.
|
126 |
|
|
-------------------------------------------------------------------------------------------------------------------------------
|
127 |
|
|
READY : process(PIClock, PIReset)
|
128 |
|
|
begin
|
129 |
|
|
if PIReset = '0' then
|
130 |
|
|
SReady <= '0';
|
131 |
|
|
elsif rising_edge(PIClock) then
|
132 |
|
|
if SStateWriteBase = idle then
|
133 |
|
|
SReady <= '1';
|
134 |
|
|
else
|
135 |
|
|
SReady <= '0';
|
136 |
|
|
end if;
|
137 |
|
|
end if;
|
138 |
|
|
end process;
|
139 |
|
|
|
140 |
|
|
-------------------------------------------------------------------------------------------------------------------------------
|
141 |
|
|
-- According to SStart signal state, this process; it assigns address, register and data inputs into their "register"
|
142 |
|
|
-- signals. When the system triggered by the reset input, all the register signals will be cleared.
|
143 |
|
|
-------------------------------------------------------------------------------------------------------------------------------
|
144 |
|
|
|
145 |
|
|
DATA_CAPTURE : process(PIClock, PIReset)
|
146 |
|
|
begin
|
147 |
|
|
if PIReset = '0' then
|
148 |
|
|
SAddrReg <= (others => '0');
|
149 |
|
|
SRegReg <= (others => '0');
|
150 |
|
|
SDataReg <= (others => '0');
|
151 |
|
|
elsif rising_edge(PIClock) then
|
152 |
|
|
if SStart = '1' then
|
153 |
|
|
SAddrReg <= SAddress;
|
154 |
|
|
SRegReg <= SRegister;
|
155 |
|
|
SDataReg <= SWriteData;
|
156 |
|
|
elsif SSIOCClock = '0' and SSIOCClockPrev = '1' then
|
157 |
|
|
SAddrReg <= SAddrReg;
|
158 |
|
|
SRegReg <= SRegReg;
|
159 |
|
|
SDataReg <= SDataReg;
|
160 |
|
|
else
|
161 |
|
|
SAddrReg <= SAddrReg;
|
162 |
|
|
SRegReg <= SRegReg;
|
163 |
|
|
SDataReg <= SDataReg;
|
164 |
|
|
end if;
|
165 |
|
|
end if;
|
166 |
|
|
end process;
|
167 |
|
|
|
168 |
|
|
-------------------------------------------------------------------------------------------------------------------------------
|
169 |
|
|
-- CLKGEN process; generates clock reference signals for SCCB interface. The important thing at this point is:
|
170 |
|
|
-- If we inspect the datasheet of the OV7670, we can see data changes at half of the period of SCCB's logic-0.
|
171 |
|
|
-- For that reason we need to create a data reference signal that changes at half of the period of SIOC reference signal.
|
172 |
|
|
--
|
173 |
|
|
-- |¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______ =====>>> SIOC Reference Clock
|
174 |
|
|
-- | | | | |
|
175 |
|
|
-- | | | | |
|
176 |
|
|
-- |¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_ =====>>> DATA Reference Clock
|
177 |
|
|
--
|
178 |
|
|
-------------------------------------------------------------------------------------------------------------------------------
|
179 |
|
|
CLKGEN : process(PIClock)
|
180 |
|
|
variable VCounter : integer range 0 to CClockCountMax := 0;
|
181 |
|
|
begin
|
182 |
|
|
if rising_edge(PIClock) then
|
183 |
|
|
--SSIODClockPrev <= SSIODClock;
|
184 |
|
|
SSIOCClockPrev <= SSIOCClock;
|
185 |
|
|
SDataClockRefPrev <= SDataClockRef;
|
186 |
|
|
|
187 |
|
|
if SCounterSCCB = (CClockCountMax / 4) - 1 then
|
188 |
|
|
SDataClockRef <= not SDataClockRef;
|
189 |
|
|
if SCounter2 = 1 then
|
190 |
|
|
--SSIODClock <= not SSIODClock;
|
191 |
|
|
SSIOCClock <= not SSIOCClock;
|
192 |
|
|
SCounter2 <= 0;
|
193 |
|
|
else
|
194 |
|
|
SCounter2 <= SCounter2 + 1;
|
195 |
|
|
end if;
|
196 |
|
|
SCounterSCCB <= 0;
|
197 |
|
|
else
|
198 |
|
|
SCounterSCCB <= SCounterSCCB +1;
|
199 |
|
|
end if;
|
200 |
|
|
|
201 |
|
|
end if;
|
202 |
|
|
end process;
|
203 |
|
|
|
204 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
205 |
|
|
-- DATA_WRITE process; It contains the state machine that will write in accordance with the SCCB interface. When PIReset input trig-
|
206 |
|
|
-- gered, all of the states, signals and registers will be cleared.
|
207 |
|
|
--
|
208 |
|
|
-- !!!!IMPORTANT!!!!
|
209 |
|
|
--
|
210 |
|
|
-- When the SCCB interface at the idle state, it will hold the SIOD output at high impedance and SIOC output at logic-1 state. Start
|
211 |
|
|
-- condition changes the SIOD line to logic-1 and after half of the SIOC referance period, changes the SIOC line to logic-0 to start
|
212 |
|
|
-- communication. The finish state is; when there is no data to be written, firstly changes the SIOC line to logic-1 state and after
|
213 |
|
|
-- half of the SIOC referance period, the SIOD line will be changed to high impedance state. But if there is another data needs to
|
214 |
|
|
-- be written, then SIOD line will be changed to logic-1 state.
|
215 |
|
|
--
|
216 |
|
|
--
|
217 |
|
|
-- SIOD -------¯¯¯¯¯¯¯| |¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯| |¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯|
|
218 |
|
|
-- |_______________________________| |_______________| |______
|
219 |
|
|
-- | | | | | | |
|
220 |
|
|
-- | | | | | | |
|
221 |
|
|
-- | | | | | | |
|
222 |
|
|
-- SIOC ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯| |¯¯¯¯¯¯¯| | |¯¯¯¯¯¯¯| | |¯¯¯¯¯¯¯| | |¯¯¯¯¯¯¯| | |¯¯¯¯¯¯¯| |
|
223 |
|
|
-- |_______________| |_______| |_______| |_______| |_______| |___|______
|
224 |
|
|
-- | | | | | | |
|
225 |
|
|
-- | | | | | | |
|
226 |
|
|
-- SIOC Ref |¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______|¯¯¯¯¯¯¯|_______
|
227 |
|
|
-- | | | | | | |
|
228 |
|
|
-- | | | | | | |
|
229 |
|
|
-- SIOD Ref |¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_|¯|_
|
230 |
|
|
--
|
231 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
232 |
|
|
|
233 |
|
|
DATA_WRITE : process(PIClock, PIReset)
|
234 |
|
|
variable VCounter : integer range 0 to 16 := 0;
|
235 |
|
|
begin
|
236 |
|
|
if PIReset = '0' then
|
237 |
|
|
SStateWriteBase <= idle;
|
238 |
|
|
SStartedWrite <= '0';
|
239 |
|
|
SAddr <= (others => '0');
|
240 |
|
|
SReg <= (others => '0');
|
241 |
|
|
SData <= (others => '0');
|
242 |
|
|
SSIODWrite <= 'Z';
|
243 |
|
|
SSIOCWrite <= '1';
|
244 |
|
|
SBusy <= '0';
|
245 |
|
|
SDone <= '0';
|
246 |
|
|
SBusy2 <= '0';
|
247 |
|
|
VCounter := 0;
|
248 |
|
|
SCounter <= 7;
|
249 |
|
|
elsif rising_edge(PIClock) then
|
250 |
|
|
case SStateWriteBase is
|
251 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
252 |
|
|
-- "idle" state; when SStartReg is triggered; takes address, register and write data to cache and changes the it's state to
|
253 |
|
|
-- "start_condition" at rising edge of SIOC reference clock.
|
254 |
|
|
-- If SStartReg signal is not triggered(SIOD = 'Z' - SIOC = '1'), then system will remain in the "idle" state.
|
255 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
256 |
|
|
when idle =>
|
257 |
|
|
if SSIOCClock = '0' and SSIOCClockPrev = '1' then
|
258 |
|
|
if SStartReg = '1' then
|
259 |
|
|
SSIODWrite <= '1';
|
260 |
|
|
SSIOCWrite <= '1';
|
261 |
|
|
SStartedWrite <= '1';
|
262 |
|
|
SDone <= '0';
|
263 |
|
|
SAddr <= SAddrReg;
|
264 |
|
|
SReg <= SRegReg;
|
265 |
|
|
SData <= SDataReg;
|
266 |
|
|
else
|
267 |
|
|
SAddr <= (others => '0');
|
268 |
|
|
SReg <= (others => '0');
|
269 |
|
|
SData <= (others => '0');
|
270 |
|
|
SStateWriteBase <= idle;
|
271 |
|
|
SSIODWrite <= 'Z';
|
272 |
|
|
SSIOCWrite <= '1';
|
273 |
|
|
SStartedWrite <= '0';
|
274 |
|
|
SDone <= '1';
|
275 |
|
|
end if;
|
276 |
|
|
elsif SSIOCClock = '1' and SSIOCClockPrev = '0' and SStartedWrite = '1' then
|
277 |
|
|
SSIODWrite <= '0';
|
278 |
|
|
|
279 |
|
|
SStartedWrite <= '0';
|
280 |
|
|
SStateWriteBase <= start_condition;
|
281 |
|
|
end if;
|
282 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
283 |
|
|
-- start_condition" state; after 2 SIOC reference clock pulse, it writes the cached address data's first bit to SIOD line while shifting
|
284 |
|
|
-- cached address data to left when rising edge of SIOD reference and SIOC reference is logic-0. After that the state will change to
|
285 |
|
|
-- "send_addr" state.
|
286 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
287 |
|
|
when start_condition =>
|
288 |
|
|
if SSIOCClock = '0' and SSIOCClockPrev = '1' then
|
289 |
|
|
SBusy <= '1';
|
290 |
|
|
if SBusy = '1' then
|
291 |
|
|
SBusy2 <= '1';
|
292 |
|
|
end if;
|
293 |
|
|
SSIOCWrite <= '0';
|
294 |
|
|
elsif SDataClockRef = '1' and SDataClockRefPrev = '0' and SSIOCClock = '0' and SBusy2 = '1' then
|
295 |
|
|
if SAddr(6) = '1' then
|
296 |
|
|
SSIODWrite <= '1';
|
297 |
|
|
SAddr <= std_logic_vector(shift_left(unsigned(SAddr), 1));
|
298 |
|
|
elsif SAddr(6) = '0' then
|
299 |
|
|
SSIODWrite <= '0';
|
300 |
|
|
SAddr <= std_logic_vector(shift_left(unsigned(SAddr), 1));
|
301 |
|
|
end if;
|
302 |
|
|
SBusy <= '0';
|
303 |
|
|
SBusy2 <= '0';
|
304 |
|
|
SStateWriteBase <= send_addr;
|
305 |
|
|
|
306 |
|
|
|
307 |
|
|
else
|
308 |
|
|
SStateWriteBase <= start_condition;
|
309 |
|
|
end if;
|
310 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
311 |
|
|
-- "send_addr" state; writes the remaining address data to SIOD line and writes the "Don't Care" bit (logic-0) to SIOD line when rising
|
312 |
|
|
-- edge of SIOD reference clock and at SIOC reference clock is 0.
|
313 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
314 |
|
|
when send_addr =>
|
315 |
|
|
if SDataClockRef = '1' and SDataClockRefPrev = '0' and SSIOCClock = '0' then
|
316 |
|
|
if VCounter <= 5 then
|
317 |
|
|
VCounter := VCounter + 1;
|
318 |
|
|
if(SAddr(6) = '1') then
|
319 |
|
|
SSIODWrite <= '1';
|
320 |
|
|
SAddr <= std_logic_vector(shift_left(unsigned(SAddr), 1));
|
321 |
|
|
elsif (SAddr(6) = '0') then
|
322 |
|
|
SSIODWrite <= '0';
|
323 |
|
|
SAddr <= std_logic_vector(shift_left(unsigned(SAddr), 1));
|
324 |
|
|
end if;
|
325 |
|
|
else
|
326 |
|
|
VCounter := 0;
|
327 |
|
|
SSIODWrite <= '0'; ---->>>> Don't Care Bit!
|
328 |
|
|
SStateWriteBase <= addr_dc;
|
329 |
|
|
SBusy <= '0';
|
330 |
|
|
end if;
|
331 |
|
|
else
|
332 |
|
|
SStateWriteBase <= send_addr;
|
333 |
|
|
end if;
|
334 |
|
|
|
335 |
|
|
when addr_dc =>
|
336 |
|
|
if SDataClockRef = '1' and SDataClockRefPrev = '0' and SSIOCClock = '0' then
|
337 |
|
|
SAddr <= (others => '0');
|
338 |
|
|
elsif SDataClockRef = '0' and SDataClockRefPrev = '1' and SSIOCClock = '0' then
|
339 |
|
|
SStateWriteBase <= send_reg;
|
340 |
|
|
end if;
|
341 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
342 |
|
|
-- "send_reg" state; It writes the register data to the SIOD line as soon as the rising edge of the SIOD reference and the SIOC
|
343 |
|
|
-- reference are logic-0. After finishing writing register data, it will write a "Don't Care" bit.
|
344 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
345 |
|
|
when send_reg =>
|
346 |
|
|
if SDataClockRef = '1' and SDataClockRefPrev = '0' and SSIOCClock = '0' then
|
347 |
|
|
SBusy <= '1';
|
348 |
|
|
if SBusy = '1' then
|
349 |
|
|
if VCounter <= 7 then
|
350 |
|
|
VCounter := VCounter + 1;
|
351 |
|
|
if(SReg(7) = '1') then
|
352 |
|
|
SSIODWrite <= '1';
|
353 |
|
|
SReg <= std_logic_vector(shift_left(unsigned(SReg), 1));
|
354 |
|
|
elsif (SReg(7) = '0') then
|
355 |
|
|
SSIODWrite <= '0';
|
356 |
|
|
SReg <= std_logic_vector(shift_left(unsigned(SReg), 1));
|
357 |
|
|
end if;
|
358 |
|
|
else
|
359 |
|
|
SBusy <= '0';
|
360 |
|
|
VCounter := 0;
|
361 |
|
|
SSIODWrite <= '0'; ---->>>> Don't Care Bit!
|
362 |
|
|
SStateWriteBase <= reg_dc;
|
363 |
|
|
end if;
|
364 |
|
|
end if;
|
365 |
|
|
end if;
|
366 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
367 |
|
|
-- "reg_dc" state; after "Don't Care" bit is written, like the other states, according SIOD and SIOC reference states it will write
|
368 |
|
|
-- the cached data's first bit while shifting to the left to SIOD line and changes it's state to "send_data".
|
369 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
370 |
|
|
when reg_dc =>
|
371 |
|
|
if SDataClockRef = '1' and SDataClockRefPrev = '0' and SSIOCClock = '0' then
|
372 |
|
|
SReg <= (others => '0');
|
373 |
|
|
SStateWriteBase <= send_data;
|
374 |
|
|
if(SData(7) = '1') then
|
375 |
|
|
SSIODWrite <= '1';
|
376 |
|
|
SData <= std_logic_vector(shift_left(unsigned(SData), 1));
|
377 |
|
|
SBusy <= '0';
|
378 |
|
|
elsif (SData(7) = '0') then
|
379 |
|
|
SSIODWrite <= '0';
|
380 |
|
|
SData <= std_logic_vector(shift_left(unsigned(SData), 1));
|
381 |
|
|
SBusy <= '0';
|
382 |
|
|
end if;
|
383 |
|
|
end if;
|
384 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
385 |
|
|
-- "send_data" state; when the first bit of the data is written, the remaining bits will be written to the SIOD line while shifting
|
386 |
|
|
-- to the left. When data write is done, it will write "Don't Care" bit to SIOD line and after 1 SIOD and SIOC reference clock it
|
387 |
|
|
-- will change it's state to "data_dc".
|
388 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
389 |
|
|
when send_data =>
|
390 |
|
|
if SDataClockRef = '1' and SDataClockRefPrev = '0' and SSIOCClock = '0' then
|
391 |
|
|
if VCounter <= 6 then
|
392 |
|
|
VCounter := VCounter + 1;
|
393 |
|
|
if(SData(7) = '1') then
|
394 |
|
|
SSIODWrite <= '1';
|
395 |
|
|
SData <= std_logic_vector(shift_left(unsigned(SData), 1));
|
396 |
|
|
elsif (SData(7) = '0') then
|
397 |
|
|
SSIODWrite <= '0';
|
398 |
|
|
SData <= std_logic_vector(shift_left(unsigned(SData), 1));
|
399 |
|
|
end if;
|
400 |
|
|
else
|
401 |
|
|
|
402 |
|
|
SSIODWrite <= '0'; ----
|
403 |
|
|
SBusy <= '1';
|
404 |
|
|
if SBusy = '1' then
|
405 |
|
|
VCounter := 0;
|
406 |
|
|
SStateWriteBase <= data_dc;
|
407 |
|
|
SBusy <= '0';
|
408 |
|
|
end if;
|
409 |
|
|
|
410 |
|
|
end if;
|
411 |
|
|
end if;
|
412 |
|
|
----------------------------------------------------------------------------------------------
|
413 |
|
|
-- "data_dc" state; waits only one SIOC reference clock and change it's state to "stop".
|
414 |
|
|
----------------------------------------------------------------------------------------------
|
415 |
|
|
when data_dc =>
|
416 |
|
|
if SSIOCClock = '1' and SSIOCClockPrev = '0' then
|
417 |
|
|
SData <= (others => '0');
|
418 |
|
|
SStateWriteBase <= stop;
|
419 |
|
|
end if;
|
420 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
421 |
|
|
-- "stop" state; for stopping the SCCB communication, firstly changes SIOC line to logic-1 state and after 1 SIOC reference clock, it
|
422 |
|
|
-- changes the SIOD line to logic-1 state and goes to "idle" state.
|
423 |
|
|
-------------------------------------------------------------------------------------------------------------------------------------------
|
424 |
|
|
when stop =>
|
425 |
|
|
SSIOCWrite <= '1';
|
426 |
|
|
if SSIOCClock = '1' and SSIOCClockPrev = '0' then
|
427 |
|
|
SSIODWrite <= '1';
|
428 |
|
|
SBusy <= '1';
|
429 |
|
|
SAddr <= (others => '0');
|
430 |
|
|
SReg <= (others => '0');
|
431 |
|
|
SData <= (others => '0');
|
432 |
|
|
if SBusy = '1' then
|
433 |
|
|
--SReady <= '1';
|
434 |
|
|
SStateWriteBase <= idle;
|
435 |
|
|
SDone <= '1';
|
436 |
|
|
|
437 |
|
|
SBusy <= '0';
|
438 |
|
|
end if;
|
439 |
|
|
elsif SSIOCClock = '0' and SSIOCClockPrev = '1' then
|
440 |
|
|
SSIODWrite <= '1';
|
441 |
|
|
end if;
|
442 |
|
|
|
443 |
|
|
when others =>
|
444 |
|
|
end case;
|
445 |
|
|
end if;
|
446 |
|
|
end process;
|
447 |
|
|
|
448 |
|
|
end Behavioral;
|