1 |
2 |
jclaytons |
--------------------------------------------------------------------------
|
2 |
|
|
-- Package
|
3 |
|
|
--
|
4 |
|
|
--
|
5 |
|
|
|
6 |
|
|
library IEEE;
|
7 |
|
|
use IEEE.STD_LOGIC_1164.ALL;
|
8 |
|
|
use IEEE.NUMERIC_STD.ALL;
|
9 |
|
|
use IEEE.MATH_REAL.ALL;
|
10 |
|
|
|
11 |
|
|
package signal_conditioning_pack is
|
12 |
|
|
|
13 |
|
|
-- Component declarations not provided any more.
|
14 |
|
|
-- With VHDL '93 and newer, component declarations are allowed,
|
15 |
|
|
-- but not required.
|
16 |
|
|
--
|
17 |
|
|
-- Please to try direct instantiation instead, for example:
|
18 |
|
|
--
|
19 |
|
|
-- instance_name : entity work.entity_name(beh)
|
20 |
|
|
--
|
21 |
|
|
|
22 |
|
|
end signal_conditioning_pack;
|
23 |
|
|
|
24 |
|
|
-------------------------------------------------------------------------------
|
25 |
|
|
-- Edge Detector
|
26 |
|
|
-------------------------------------------------------------------------------
|
27 |
|
|
--
|
28 |
|
|
-- Author: John Clayton
|
29 |
|
|
-- Date : Nov. 1, 2013 Started Coding, drawing from various other sources.
|
30 |
|
|
-- Created description. Simulated it and saw that it
|
31 |
|
|
-- works.
|
32 |
|
|
--
|
33 |
|
|
--
|
34 |
|
|
-- Description
|
35 |
|
|
-------------------------------------------------------------------------------
|
36 |
|
|
-- This module is a super simple edge detector, which produces is high-going
|
37 |
|
|
-- pulse whenever there is an edge on the input. The type of edge is
|
38 |
|
|
-- selectable via generic.
|
39 |
|
|
--
|
40 |
|
|
-- The sys_clk_en affects the operation by extending the length of the pulse
|
41 |
|
|
-- output beyond one single sys_clk cycle, as expected.
|
42 |
|
|
--
|
43 |
|
|
-- Detecting both rising and falling edges is allowed. Detecting neither is
|
44 |
|
|
-- also allowed, but not recommended.
|
45 |
|
|
--
|
46 |
|
|
-- The sys_rst_n input is an asynchronous reset.
|
47 |
|
|
|
48 |
|
|
library IEEE;
|
49 |
|
|
use IEEE.STD_LOGIC_1164.ALL;
|
50 |
|
|
use IEEE.NUMERIC_STD.ALL;
|
51 |
|
|
use IEEE.MATH_REAL.ALL;
|
52 |
|
|
|
53 |
|
|
entity edge_detector is
|
54 |
|
|
generic(
|
55 |
|
|
DETECT_RISING : natural := 1;
|
56 |
|
|
DETECT_FALLING : natural := 0
|
57 |
|
|
);
|
58 |
|
|
port (
|
59 |
|
|
-- System Clock and Clock Enable
|
60 |
|
|
sys_rst_n : in std_logic;
|
61 |
|
|
sys_clk : in std_logic;
|
62 |
|
|
sys_clk_en : in std_logic;
|
63 |
|
|
|
64 |
|
|
-- Input Signal
|
65 |
|
|
sig_i : in std_logic;
|
66 |
|
|
|
67 |
|
|
-- Output pulse
|
68 |
|
|
pulse_o : out std_logic
|
69 |
|
|
|
70 |
|
|
);
|
71 |
|
|
end edge_detector;
|
72 |
|
|
|
73 |
|
|
architecture beh of edge_detector is
|
74 |
|
|
|
75 |
|
|
-- Constants
|
76 |
|
|
|
77 |
|
|
-- Functions & associated types
|
78 |
|
|
|
79 |
|
|
-- Signal Declarations
|
80 |
|
|
signal sig_r1 : std_logic;
|
81 |
|
|
signal pulse_r : std_logic;
|
82 |
|
|
signal pulse_f : std_logic;
|
83 |
|
|
signal pulse_b : std_logic;
|
84 |
|
|
|
85 |
|
|
begin
|
86 |
|
|
|
87 |
|
|
process (sys_clk, sys_rst_n)
|
88 |
|
|
begin
|
89 |
|
|
if (sys_rst_n='0') then
|
90 |
|
|
sig_r1 <= '0';
|
91 |
|
|
elsif (sys_clk'event and sys_clk='1') then -- rising edge
|
92 |
|
|
if (sys_clk_en='1') then
|
93 |
|
|
sig_r1 <= sig_i;
|
94 |
|
|
end if;
|
95 |
|
|
end if;
|
96 |
|
|
end process;
|
97 |
|
|
|
98 |
|
|
-- The detection
|
99 |
|
|
pulse_r <= '1' when sig_i='1' and sig_r1='0' else '0';
|
100 |
|
|
pulse_f <= '1' when sig_i='0' and sig_r1='1' else '0';
|
101 |
|
|
pulse_b <= sig_i xor sig_r1;
|
102 |
|
|
|
103 |
|
|
-- The output
|
104 |
|
|
pulse_o <= pulse_b when DETECT_RISING/=0 and DETECT_FALLING/=0 else
|
105 |
|
|
pulse_r when DETECT_RISING/=0 else
|
106 |
|
|
pulse_f when DETECT_FALLING/=0 else
|
107 |
|
|
'0'; -- Haha! Don't go there!
|
108 |
|
|
|
109 |
|
|
end beh;
|
110 |
|
|
|
111 |
|
|
-------------------------------------------------------------------------------
|
112 |
|
|
-- Leaky Integrator
|
113 |
|
|
-------------------------------------------------------------------------------
|
114 |
|
|
--
|
115 |
|
|
-- Author: John Clayton
|
116 |
|
|
-- Date : Oct. 11, 2013 Started Coding, drawing from various other sources.
|
117 |
|
|
-- Created description. Simulated it and saw that it
|
118 |
|
|
-- works.
|
119 |
|
|
-- Sep. 20, 2017 Revised delta assignment, to eliminate custom
|
120 |
|
|
-- resize function.
|
121 |
|
|
--
|
122 |
|
|
-- Description
|
123 |
|
|
-------------------------------------------------------------------------------
|
124 |
|
|
-- This module is a pretty simple digital "leaky integrator" designed to low
|
125 |
|
|
-- pass noisy signals by integrating them.
|
126 |
|
|
--
|
127 |
|
|
-- The first order differential equation is of the form:
|
128 |
|
|
--
|
129 |
|
|
-- dx/dt = -leak_factor*x + input
|
130 |
|
|
--
|
131 |
|
|
-- The input is discretized in both time and amplitude. A one bit digital
|
132 |
|
|
-- input can be mapped to the "input" signal by using a positive value for
|
133 |
|
|
-- '1' and a negative value for '0' Alternately, a signed DSP type signal
|
134 |
|
|
-- can be used directly.
|
135 |
|
|
--
|
136 |
|
|
-- The "leak_factor" is a feedback term, so that "DC gain" is inversely
|
137 |
|
|
-- proportional to the leak_factor.
|
138 |
|
|
--
|
139 |
|
|
-- Due to the presence of the feedback term, the integration's DC value, or
|
140 |
|
|
-- constant term, gets "leaked" to zero over time. This is nice because
|
141 |
|
|
-- the threshold centers around zero.
|
142 |
|
|
--
|
143 |
|
|
-- Hysteresis can be added so that the digital output transitions an amount
|
144 |
|
|
-- above or below zero, depending on the current value of the output.
|
145 |
|
|
--
|
146 |
|
|
-- Clear as mud? Well, it's similar to a low-pass filter, and the hysteresis
|
147 |
|
|
-- also helps remove noise on the input signal.
|
148 |
|
|
--
|
149 |
|
|
-- The sys_rst_n input is an asynchronous reset.
|
150 |
|
|
|
151 |
|
|
library IEEE;
|
152 |
|
|
use IEEE.STD_LOGIC_1164.ALL;
|
153 |
|
|
use IEEE.NUMERIC_STD.ALL;
|
154 |
|
|
use IEEE.MATH_REAL.ALL;
|
155 |
|
|
|
156 |
|
|
entity leaky_integrator is
|
157 |
|
|
generic(
|
158 |
|
|
LEAK_FACTOR_BITS : natural := 10;
|
159 |
|
|
LEAK_FACTOR : natural := 10;
|
160 |
|
|
INTEGRATOR_BITS : natural := 16 -- Bits in the integrating accumulator
|
161 |
|
|
);
|
162 |
|
|
port (
|
163 |
|
|
-- System Clock and Clock Enable
|
164 |
|
|
sys_rst_n : in std_logic;
|
165 |
|
|
sys_clk : in std_logic;
|
166 |
|
|
sys_clk_en : in std_logic;
|
167 |
|
|
|
168 |
|
|
-- Settings
|
169 |
|
|
input : in signed(INTEGRATOR_BITS-1 downto 0);
|
170 |
|
|
|
171 |
|
|
-- Integration Result
|
172 |
|
|
integrator : out signed(INTEGRATOR_BITS-1 downto 0)
|
173 |
|
|
|
174 |
|
|
);
|
175 |
|
|
end leaky_integrator;
|
176 |
|
|
|
177 |
|
|
architecture beh of leaky_integrator is
|
178 |
|
|
|
179 |
|
|
-- Constants
|
180 |
|
|
|
181 |
|
|
-- Functions & associated types
|
182 |
|
|
|
183 |
|
|
-- Signal Declarations
|
184 |
|
|
signal sum : signed(INTEGRATOR_BITS-1 downto 0);
|
185 |
|
|
signal delta : signed(INTEGRATOR_BITS-1 downto 0);
|
186 |
|
|
signal m_term : signed(INTEGRATOR_BITS+LEAK_FACTOR_BITS downto 0);
|
187 |
|
|
|
188 |
|
|
begin
|
189 |
|
|
|
190 |
|
|
-- The feedback term
|
191 |
|
|
m_term <= sum*to_signed(LEAK_FACTOR,LEAK_FACTOR_BITS+1);
|
192 |
|
|
|
193 |
|
|
-- The difference term
|
194 |
|
|
delta <= input - m_term(m_term'length-1 downto m_term'length-delta'length);
|
195 |
|
|
|
196 |
|
|
-- The leaky integrator
|
197 |
|
|
process (sys_clk, sys_rst_n)
|
198 |
|
|
begin
|
199 |
|
|
if (sys_rst_n='0') then
|
200 |
|
|
sum <= to_signed(0,integrator'length);
|
201 |
|
|
elsif (sys_clk'event and sys_clk='1') then -- rising edge
|
202 |
|
|
if (sys_clk_en='1') then
|
203 |
|
|
sum <= sum + delta;
|
204 |
|
|
end if;
|
205 |
|
|
end if;
|
206 |
|
|
end process;
|
207 |
|
|
|
208 |
|
|
-- The outputs
|
209 |
|
|
integrator <= sum;
|
210 |
|
|
|
211 |
|
|
end beh;
|
212 |
|
|
|
213 |
|
|
-------------------------------------------------------------------------------
|
214 |
|
|
-- Leaky Integrator with conditioned Digital Output
|
215 |
|
|
-------------------------------------------------------------------------------
|
216 |
|
|
--
|
217 |
|
|
-- Author: John Clayton
|
218 |
|
|
-- Date : Oct. 11, 2013 Started Coding, drawing from various other sources.
|
219 |
|
|
-- Created description. Simulated it and saw that it
|
220 |
|
|
-- works.
|
221 |
|
|
-- Sep. 20, 2017 Revised delta assignment, to eliminate custom
|
222 |
|
|
-- resize function.
|
223 |
|
|
--
|
224 |
|
|
--
|
225 |
|
|
-- Description
|
226 |
|
|
-------------------------------------------------------------------------------
|
227 |
|
|
-- This module is a pretty simple digital "leaky integrator" designed to clean
|
228 |
|
|
-- up noisy repetitive signals by integrating them, and applying thresholds
|
229 |
|
|
-- to the integrated result.
|
230 |
|
|
--
|
231 |
|
|
-- The first order differential equation is of the form:
|
232 |
|
|
--
|
233 |
|
|
-- dx/dt = -leak_factor*x + input
|
234 |
|
|
--
|
235 |
|
|
-- The input is discretized in both time and amplitude. A one bit digital
|
236 |
|
|
-- input can be mapped to the "input" signal by using a positive value for
|
237 |
|
|
-- '1' and a negative value for '0'
|
238 |
|
|
--
|
239 |
|
|
-- The "leak_factor" is a feedback term, so that "DC gain" is inversely
|
240 |
|
|
-- proportional to the leak_factor.
|
241 |
|
|
--
|
242 |
|
|
-- Due to the presence of the feedback term, the integration's DC value, or
|
243 |
|
|
-- constant term, gets "leaked" to zero over time. This is nice because
|
244 |
|
|
-- the threshold centers around zero.
|
245 |
|
|
--
|
246 |
|
|
-- Hysteresis can be added so that the digital output transitions an amount
|
247 |
|
|
-- above or below zero, depending on the current value of the output.
|
248 |
|
|
--
|
249 |
|
|
-- Clear as mud? Well, it's similar to a low-pass filter, and the hysteresis
|
250 |
|
|
-- also helps remove noise on the input signal.
|
251 |
|
|
--
|
252 |
|
|
-- The sys_rst_n input is an asynchronous reset.
|
253 |
|
|
|
254 |
|
|
library IEEE;
|
255 |
|
|
use IEEE.STD_LOGIC_1164.ALL;
|
256 |
|
|
use IEEE.NUMERIC_STD.ALL;
|
257 |
|
|
use IEEE.MATH_REAL.ALL;
|
258 |
|
|
|
259 |
|
|
entity leaky_integrator_with_digital_output is
|
260 |
|
|
generic(
|
261 |
|
|
FACTOR_BITS : natural := 10; -- Make this less than INTEGRATOR_BITS
|
262 |
|
|
HYSTERESIS_BITS : natural := 10; -- Make this less than INTEGRATOR_BITS
|
263 |
|
|
INTEGRATOR_BITS : natural := 16 -- Bits in the integrating accumulator
|
264 |
|
|
);
|
265 |
|
|
port (
|
266 |
|
|
-- System Clock and Clock Enable
|
267 |
|
|
sys_rst_n : in std_logic;
|
268 |
|
|
sys_clk : in std_logic;
|
269 |
|
|
sys_clk_en : in std_logic;
|
270 |
|
|
|
271 |
|
|
-- Settings
|
272 |
|
|
input : in signed(INTEGRATOR_BITS-1 downto 0);
|
273 |
|
|
leak_factor : in signed(FACTOR_BITS-1 downto 0);
|
274 |
|
|
hysteresis : in unsigned(HYSTERESIS_BITS-1 downto 0);
|
275 |
|
|
|
276 |
|
|
-- Integration Result
|
277 |
|
|
integrator : out signed(INTEGRATOR_BITS-1 downto 0);
|
278 |
|
|
|
279 |
|
|
-- Conditioned Digital Output Signal
|
280 |
|
|
output : out std_logic
|
281 |
|
|
);
|
282 |
|
|
end leaky_integrator_with_digital_output;
|
283 |
|
|
|
284 |
|
|
architecture beh of leaky_integrator_with_digital_output is
|
285 |
|
|
|
286 |
|
|
-- Constants
|
287 |
|
|
|
288 |
|
|
-- Functions & associated types
|
289 |
|
|
|
290 |
|
|
-- Signal Declarations
|
291 |
|
|
signal sum : signed(INTEGRATOR_BITS-1 downto 0);
|
292 |
|
|
signal delta : signed(INTEGRATOR_BITS-1 downto 0);
|
293 |
|
|
signal m_term : signed(INTEGRATOR_BITS+FACTOR_BITS-1 downto 0);
|
294 |
|
|
signal out_l : std_logic;
|
295 |
|
|
signal hp_term : signed(INTEGRATOR_BITS-1 downto 0);
|
296 |
|
|
signal hn_term : signed(INTEGRATOR_BITS-1 downto 0);
|
297 |
|
|
|
298 |
|
|
begin
|
299 |
|
|
|
300 |
|
|
-- The feedback term
|
301 |
|
|
m_term <= sum*leak_factor;
|
302 |
|
|
|
303 |
|
|
-- The difference term
|
304 |
|
|
delta <= input - m_term(m_term'length-1 downto m_term'length-delta'length);
|
305 |
|
|
|
306 |
|
|
-- The leaky integrator
|
307 |
|
|
process (sys_clk, sys_rst_n)
|
308 |
|
|
begin
|
309 |
|
|
if (sys_rst_n='0') then
|
310 |
|
|
sum <= to_signed(0,integrator'length);
|
311 |
|
|
out_l <= '0';
|
312 |
|
|
elsif (sys_clk'event and sys_clk='1') then -- rising edge
|
313 |
|
|
if (sys_clk_en='1') then
|
314 |
|
|
sum <= sum + delta;
|
315 |
|
|
if (out_l='0') then
|
316 |
|
|
if (sum>hp_term) then
|
317 |
|
|
out_l <= '1';
|
318 |
|
|
end if;
|
319 |
|
|
else
|
320 |
|
|
if (sum<hn_term) then
|
321 |
|
|
out_l <= '0';
|
322 |
|
|
end if;
|
323 |
|
|
end if;
|
324 |
|
|
end if;
|
325 |
|
|
end if;
|
326 |
|
|
end process;
|
327 |
|
|
|
328 |
|
|
-- The hysteresis terms
|
329 |
|
|
hp_term <= signed(resize(hysteresis,INTEGRATOR_BITS));
|
330 |
|
|
hn_term <= not(hp_term)+1;
|
331 |
|
|
|
332 |
|
|
-- The outputs
|
333 |
|
|
integrator <= sum;
|
334 |
|
|
output <= out_l;
|
335 |
|
|
|
336 |
|
|
end beh;
|
337 |
|
|
|
338 |
|
|
-------------------------------------------------------------------------------
|
339 |
|
|
-- Multi Stage Leaky Integrator with Digital Output
|
340 |
|
|
-------------------------------------------------------------------------------
|
341 |
|
|
--
|
342 |
|
|
-- Author: John Clayton
|
343 |
|
|
-- Date : Oct. 11, 2013 Started Coding, drawing from various other sources.
|
344 |
|
|
-- Created description.
|
345 |
|
|
--
|
346 |
|
|
--
|
347 |
|
|
-- Description
|
348 |
|
|
-------------------------------------------------------------------------------
|
349 |
|
|
-- This module implements N-stages of leaky integrators. Each stage has the
|
350 |
|
|
-- same leak factor, which is a value fixed by generics. Use powers of two
|
351 |
|
|
-- to avoid inferring multipliers. The smallest value of 1 is actually a
|
352 |
|
|
-- pretty nice choice. The LEAK_FACTOR_BITS generic determines how small
|
353 |
|
|
-- the leak factor is by setting the number of bits. The integer is converted
|
354 |
|
|
-- as follows:
|
355 |
|
|
--
|
356 |
|
|
-- multiplicand = to_signed(LEAK_FACTOR,LEAK_FACTOR_BITS);
|
357 |
|
|
--
|
358 |
|
|
-- It seems that the smallest signed number is 2 bits wide - one for a sign
|
359 |
|
|
-- bit, and the other for magnitude. So, LEAK_FACTOR_BITS must be >=2.
|
360 |
|
|
-- Between stages, an arithmetic shift right operation is inserted, which is
|
361 |
|
|
-- intended to automatically scale the signal to fit the next integrator.
|
362 |
|
|
--
|
363 |
|
|
-- The hysteresis value is only applied at the final stage output, to derive
|
364 |
|
|
-- the conditioned digital output signal.
|
365 |
|
|
--
|
366 |
|
|
-- The "leak_factor" is a feedback term, so that "DC gain" is inversely
|
367 |
|
|
-- proportional to the leak_factor.
|
368 |
|
|
--
|
369 |
|
|
-- Due to the presence of the feedback term, the integration's DC value, or
|
370 |
|
|
-- constant term, gets "leaked" to zero over time. This is nice because
|
371 |
|
|
-- the threshold centers around zero.
|
372 |
|
|
--
|
373 |
|
|
-- Hysteresis can be added so that the digital output transitions an amount
|
374 |
|
|
-- above or below zero, depending on the current value of the output.
|
375 |
|
|
--
|
376 |
|
|
-- Clear as mud? Well, it's similar to a low-pass filter, and the hysteresis
|
377 |
|
|
-- also helps remove noise on the input signal.
|
378 |
|
|
--
|
379 |
|
|
-- The more stages are used, the more low-pass filtering occurs.
|
380 |
|
|
--
|
381 |
|
|
-- The sys_rst_n input is an asynchronous reset.
|
382 |
|
|
|
383 |
|
|
library IEEE;
|
384 |
|
|
use IEEE.STD_LOGIC_1164.ALL;
|
385 |
|
|
use IEEE.NUMERIC_STD.ALL;
|
386 |
|
|
use IEEE.MATH_REAL.ALL;
|
387 |
|
|
|
388 |
|
|
library work;
|
389 |
|
|
use work.signal_conditioning_pack.all;
|
390 |
|
|
|
391 |
|
|
entity multi_stage_leaky_integrator is
|
392 |
|
|
generic(
|
393 |
|
|
STAGES : natural := 2;
|
394 |
|
|
LEAK_FACTOR_BITS : natural := 5; -- Inversely related to LP corner frequency. (Min=1)
|
395 |
|
|
HYSTERESIS_BITS : natural := 8; -- Make this less than INTEGRATOR_BITS
|
396 |
|
|
INTEGRATOR_BITS : natural := 16 -- Bits in each integrating accumulator
|
397 |
|
|
);
|
398 |
|
|
port (
|
399 |
|
|
-- System Clock and Clock Enable
|
400 |
|
|
sys_rst_n : in std_logic;
|
401 |
|
|
sys_clk : in std_logic;
|
402 |
|
|
sys_clk_en : in std_logic;
|
403 |
|
|
|
404 |
|
|
-- Settings
|
405 |
|
|
input : in signed(INTEGRATOR_BITS-1 downto 0);
|
406 |
|
|
hysteresis : in unsigned(HYSTERESIS_BITS-1 downto 0);
|
407 |
|
|
|
408 |
|
|
-- Final Stage Integration Result
|
409 |
|
|
integrator : out signed(INTEGRATOR_BITS-1 downto 0);
|
410 |
|
|
|
411 |
|
|
-- Conditioned Digital Output Signal
|
412 |
|
|
output : out std_logic
|
413 |
|
|
);
|
414 |
|
|
end multi_stage_leaky_integrator;
|
415 |
|
|
|
416 |
|
|
architecture beh of multi_stage_leaky_integrator is
|
417 |
|
|
|
418 |
|
|
-- Constants
|
419 |
|
|
-- This value has been found to preserve amplitude between stages,
|
420 |
|
|
-- without appreciable growth or shrinkage of sum levels.
|
421 |
|
|
constant STAGE_ASR : natural := LEAK_FACTOR_BITS+1;
|
422 |
|
|
constant LEAK_FACTOR : natural := 1;
|
423 |
|
|
|
424 |
|
|
-- Functions & associated types
|
425 |
|
|
|
426 |
|
|
-- Signal Declarations
|
427 |
|
|
type sum_type is array (natural range STAGES-1 downto 0) of signed(INTEGRATOR_BITS-1 downto 0);
|
428 |
|
|
signal sum_in : sum_type;
|
429 |
|
|
signal sum_out : sum_type;
|
430 |
|
|
signal out_l : std_logic;
|
431 |
|
|
signal hp_term : signed(INTEGRATOR_BITS-1 downto 0);
|
432 |
|
|
signal hn_term : signed(INTEGRATOR_BITS-1 downto 0);
|
433 |
|
|
|
434 |
|
|
begin
|
435 |
|
|
|
436 |
|
|
|
437 |
|
|
----------------------------------------------
|
438 |
|
|
leaky_gen : for nvar in 0 to STAGES-1 generate
|
439 |
|
|
begin
|
440 |
|
|
lint : entity work.leaky_integrator(beh)
|
441 |
|
|
generic map(
|
442 |
|
|
LEAK_FACTOR_BITS => LEAK_FACTOR_BITS,
|
443 |
|
|
LEAK_FACTOR => LEAK_FACTOR,
|
444 |
|
|
INTEGRATOR_BITS => INTEGRATOR_BITS
|
445 |
|
|
)
|
446 |
|
|
port map(
|
447 |
|
|
-- System Clock and Clock Enable
|
448 |
|
|
sys_rst_n => sys_rst_n,
|
449 |
|
|
sys_clk => sys_clk,
|
450 |
|
|
sys_clk_en => sys_clk_en,
|
451 |
|
|
|
452 |
|
|
-- Settings
|
453 |
|
|
input => sum_in(nvar),
|
454 |
|
|
|
455 |
|
|
-- Integration Result
|
456 |
|
|
integrator => sum_out(nvar)
|
457 |
|
|
|
458 |
|
|
);
|
459 |
|
|
end generate;
|
460 |
|
|
|
461 |
|
|
sum_in(0) <= input;
|
462 |
|
|
sum_gen : for nvar in 1 to STAGES-1 generate
|
463 |
|
|
begin
|
464 |
|
|
sum_in(nvar) <= shift_right(sum_out(nvar-1),STAGE_ASR);
|
465 |
|
|
end generate;
|
466 |
|
|
|
467 |
|
|
-- The hysteresis and digital output
|
468 |
|
|
process (sys_clk, sys_rst_n)
|
469 |
|
|
begin
|
470 |
|
|
if (sys_rst_n='0') then
|
471 |
|
|
out_l <= '0';
|
472 |
|
|
elsif (sys_clk'event and sys_clk='1') then -- rising edge
|
473 |
|
|
if (sys_clk_en='1') then
|
474 |
|
|
if (out_l='0') then
|
475 |
|
|
if (sum_out(STAGES-1)>hp_term) then
|
476 |
|
|
out_l <= '1';
|
477 |
|
|
end if;
|
478 |
|
|
else
|
479 |
|
|
if (sum_out(STAGES-1)<hn_term) then
|
480 |
|
|
out_l <= '0';
|
481 |
|
|
end if;
|
482 |
|
|
end if;
|
483 |
|
|
end if;
|
484 |
|
|
end if;
|
485 |
|
|
end process;
|
486 |
|
|
|
487 |
|
|
-- The hysteresis terms
|
488 |
|
|
hp_term <= signed(resize(hysteresis,INTEGRATOR_BITS));
|
489 |
|
|
hn_term <= not(hp_term)+1;
|
490 |
|
|
|
491 |
|
|
-- The outputs
|
492 |
|
|
integrator <= sum_out(STAGES-1);
|
493 |
|
|
output <= out_l;
|
494 |
|
|
|
495 |
|
|
end beh;
|
496 |
|
|
|
497 |
|
|
-------------------------------------------------------------------------------
|
498 |
|
|
-- Integrating Pulse Stretcher
|
499 |
|
|
-------------------------------------------------------------------------------
|
500 |
|
|
--
|
501 |
|
|
-- Author: John Clayton
|
502 |
|
|
-- Date : Oct. 24, 2013 Started Coding, drawing from various other sources.
|
503 |
|
|
-- Created description. Simulated it and saw that it
|
504 |
|
|
-- works.
|
505 |
|
|
--
|
506 |
|
|
--
|
507 |
|
|
-- Description
|
508 |
|
|
-------------------------------------------------------------------------------
|
509 |
|
|
-- This module is a pretty simple digital pulse stretcher. A high input pulse
|
510 |
|
|
-- present for more than MIN_CLKS clock cycles causes the INITIAL_OFFSET value
|
511 |
|
|
-- to be loaded into an accumulator. The accumulator is then incremented by
|
512 |
|
|
-- STRETCH_FACTOR each clock cycle that the input pulse remains high, and is
|
513 |
|
|
-- decremented by one for each clock cycle that the input pulse is low.
|
514 |
|
|
--
|
515 |
|
|
-- The output is driven high whenever the accumulator is positive.
|
516 |
|
|
--
|
517 |
|
|
-- The output pulse width is given by:
|
518 |
|
|
--
|
519 |
|
|
-- Tpulse_o = STRETCH_FACTOR*(Tpulse_i-MIN_CLKS) + INITIAL_OFFSET
|
520 |
|
|
--
|
521 |
|
|
-- The INITIAL_OFFSET can be used to overcome the effects of minimum input
|
522 |
|
|
-- pulse filtering. Also, if a negative value is used for it, then the
|
523 |
|
|
-- output pulse is delayed by additional clock cycles beyond the MIN_CLKS
|
524 |
|
|
-- of delay already present. Another use for the INITIAL_OFFSET value is
|
525 |
|
|
-- to "bridge together" a train of pulses which might have some jitter.
|
526 |
|
|
-- The INITIAL_OFFSET value allows for some slop of jitter to be covered
|
527 |
|
|
-- by the extra decay time, so that no "gaps" appear in the output pulse.
|
528 |
|
|
--
|
529 |
|
|
-- During the decay time, when the output is high, the arrival of a new pulse
|
530 |
|
|
-- will cause further charging of the accumulator. There is no minimum pulse
|
531 |
|
|
-- width for this to occur. The MIN_CLKS only applies to starting the unit
|
532 |
|
|
-- from a quiescent state.
|
533 |
|
|
--
|
534 |
|
|
-- The integrator is a signed quantity, so set INTEGRATOR_BITS accordingly,
|
535 |
|
|
-- because the integrator can only hold positive quantities up to
|
536 |
|
|
-- 2^(INTEGRATOR_BITS-1)-1.
|
537 |
|
|
--
|
538 |
|
|
-- The sys_rst_n input is an asynchronous reset.
|
539 |
|
|
|
540 |
|
|
library IEEE;
|
541 |
|
|
use IEEE.STD_LOGIC_1164.ALL;
|
542 |
|
|
use IEEE.NUMERIC_STD.ALL;
|
543 |
|
|
use IEEE.MATH_REAL.ALL;
|
544 |
|
|
|
545 |
|
|
library work;
|
546 |
|
|
use work.function_pack.all;
|
547 |
|
|
|
548 |
|
|
entity integrating_pulse_stretcher is
|
549 |
|
|
generic(
|
550 |
|
|
MIN_CLKS : natural := 5; -- pulses below this many clocks are ignored
|
551 |
|
|
RETRIGGERABLE : natural := 1; -- 1=restart on new pulses. 0=decay to zero before restarting
|
552 |
|
|
STRETCH_FACTOR : natural := 2; -- 0=no output, 1=same size, 2=double
|
553 |
|
|
INITIAL_OFFSET : natural := 25; -- Value initially loaded into integrator
|
554 |
|
|
INTEGRATOR_BITS : natural := 16 -- Bits in the integrating accumulator
|
555 |
|
|
);
|
556 |
|
|
port (
|
557 |
|
|
-- System Clock and Clock Enable
|
558 |
|
|
sys_rst_n : in std_logic;
|
559 |
|
|
sys_clk : in std_logic;
|
560 |
|
|
sys_clk_en : in std_logic;
|
561 |
|
|
|
562 |
|
|
-- Input
|
563 |
|
|
pulse_i : in std_logic;
|
564 |
|
|
|
565 |
|
|
-- Output
|
566 |
|
|
pulse_o : out std_logic
|
567 |
|
|
|
568 |
|
|
);
|
569 |
|
|
end integrating_pulse_stretcher;
|
570 |
|
|
|
571 |
|
|
architecture beh of integrating_pulse_stretcher is
|
572 |
|
|
|
573 |
|
|
-- Constants
|
574 |
|
|
constant RUNT_BITS : natural := timer_width(MIN_CLKS);
|
575 |
|
|
|
576 |
|
|
-- Functions & associated types
|
577 |
|
|
|
578 |
|
|
-- Signal Declarations
|
579 |
|
|
signal runt_count : unsigned(RUNT_BITS-1 downto 0);
|
580 |
|
|
signal sum : signed(INTEGRATOR_BITS-1 downto 0);
|
581 |
|
|
signal pulse_i_r1 : std_logic;
|
582 |
|
|
signal pulse_l : std_logic;
|
583 |
|
|
|
584 |
|
|
begin
|
585 |
|
|
|
586 |
|
|
-- The integrator
|
587 |
|
|
process (sys_clk, sys_rst_n)
|
588 |
|
|
begin
|
589 |
|
|
if (sys_rst_n='0') then
|
590 |
|
|
runt_count <= to_unsigned(0,runt_count'length);
|
591 |
|
|
sum <= to_signed(0,sum'length);
|
592 |
|
|
pulse_i_r1 <= '0';
|
593 |
|
|
elsif (sys_clk'event and sys_clk='1') then -- rising edge
|
594 |
|
|
if (sys_clk_en='1') then
|
595 |
|
|
-- Detect rising edge of input pulse
|
596 |
|
|
pulse_i_r1 <= pulse_i;
|
597 |
|
|
-- When the pulse_i input is consecutively high, decrement the runt
|
598 |
|
|
-- counter until it is zero.
|
599 |
|
|
if (runt_count>0) then
|
600 |
|
|
if (pulse_i='1') then
|
601 |
|
|
runt_count <= runt_count-1;
|
602 |
|
|
else
|
603 |
|
|
runt_count <= to_unsigned(MIN_CLKS,runt_count'length);
|
604 |
|
|
end if;
|
605 |
|
|
end if;
|
606 |
|
|
-- Trigger on rising edge of pulse_i
|
607 |
|
|
if (pulse_i='1' and pulse_i_r1='0') then
|
608 |
|
|
if (pulse_l='0' or (RETRIGGERABLE=1 and pulse_l='1')) then
|
609 |
|
|
runt_count <= to_unsigned(MIN_CLKS,runt_count'length);
|
610 |
|
|
end if;
|
611 |
|
|
end if;
|
612 |
|
|
-- Load initial offset into accumulator on final runt countdown
|
613 |
|
|
if (runt_count=1) then
|
614 |
|
|
sum <= to_signed(INITIAL_OFFSET,sum'length);
|
615 |
|
|
end if;
|
616 |
|
|
-- Either accumulate or decay, depending on input state
|
617 |
|
|
if (pulse_i='1' and runt_count=0) then
|
618 |
|
|
sum <= sum+STRETCH_FACTOR;
|
619 |
|
|
elsif (pulse_i='0' and pulse_l='1') then
|
620 |
|
|
sum <= sum-1;
|
621 |
|
|
end if;
|
622 |
|
|
end if;
|
623 |
|
|
end if;
|
624 |
|
|
end process;
|
625 |
|
|
|
626 |
|
|
-- The output
|
627 |
|
|
pulse_l <= '1' when (sum>0) else '0';
|
628 |
|
|
pulse_o <= pulse_l;
|
629 |
|
|
|
630 |
|
|
end beh;
|
631 |
|
|
|