1 |
4 |
gedra |
----------------------------------------------------------------------
|
2 |
|
|
---- ----
|
3 |
|
|
---- Rand number generator library. ----
|
4 |
|
|
---- ----
|
5 |
|
|
---- This file is part of the Random Number Generator project ----
|
6 |
|
|
---- http://www.opencores.org/cores/rng_lib/ ----
|
7 |
|
|
---- ----
|
8 |
|
|
---- Description ----
|
9 |
|
|
---- This library has function for generation random numbers with ----
|
10 |
|
|
---- the following distributions: ----
|
11 |
|
|
---- - Uniform (continous) ----
|
12 |
|
|
---- - Exponential (continous) ----
|
13 |
|
|
---- - Gaussian (continous) ----
|
14 |
|
|
---- ----
|
15 |
|
|
---- Random numbers are produced with a combination of 3 ----
|
16 |
|
|
---- Tausworthe generators which gives very good statistical ----
|
17 |
|
|
---- properties. ----
|
18 |
|
|
---- ----
|
19 |
|
|
---- NOTE! These functions will NOT synthesize. They are for test ----
|
20 |
|
|
---- bench use only! ----
|
21 |
|
|
---- ----
|
22 |
|
|
---- To Do: ----
|
23 |
|
|
---- - ----
|
24 |
|
|
---- ----
|
25 |
|
|
---- Author(s): ----
|
26 |
|
|
---- - Geir Drange, gedra@opencores.org ----
|
27 |
|
|
---- ----
|
28 |
|
|
----------------------------------------------------------------------
|
29 |
|
|
---- ----
|
30 |
|
|
---- Copyright (C) 2004 Authors and OPENCORES.ORG ----
|
31 |
|
|
---- ----
|
32 |
|
|
---- This source file may be used and distributed without ----
|
33 |
|
|
---- restriction provided that this copyright statement is not ----
|
34 |
|
|
---- removed from the file and that any derivative work contains ----
|
35 |
|
|
---- the original copyright notice and the associated disclaimer. ----
|
36 |
|
|
---- ----
|
37 |
|
|
---- This source file is free software; you can redistribute it ----
|
38 |
|
|
---- and/or modify it under the terms of the GNU General ----
|
39 |
|
|
---- Public License as published by the Free Software Foundation; ----
|
40 |
|
|
---- either version 2.0 of the License, or (at your option) any ----
|
41 |
|
|
---- later version. ----
|
42 |
|
|
---- ----
|
43 |
|
|
---- This source is distributed in the hope that it will be ----
|
44 |
|
|
---- useful, but WITHOUT ANY WARRANTY; without even the implied ----
|
45 |
|
|
---- warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ----
|
46 |
|
|
---- PURPOSE. See the GNU General Public License for more details.----
|
47 |
|
|
---- ----
|
48 |
|
|
---- You should have received a copy of the GNU General ----
|
49 |
|
|
---- Public License along with this source; if not, download it ----
|
50 |
|
|
---- from http://www.gnu.org/licenses/gpl.txt ----
|
51 |
|
|
---- ----
|
52 |
|
|
----------------------------------------------------------------------
|
53 |
|
|
--
|
54 |
|
|
-- CVS Revision History
|
55 |
|
|
--
|
56 |
|
|
-- $Log: not supported by cvs2svn $
|
57 |
7 |
gedra |
-- Revision 1.1 2004/09/28 15:12:28 gedra
|
58 |
|
|
-- Random number library functions.
|
59 |
4 |
gedra |
--
|
60 |
|
|
--
|
61 |
7 |
gedra |
--
|
62 |
|
|
|
63 |
4 |
gedra |
library ieee;
|
64 |
|
|
use ieee.std_logic_1164.all;
|
65 |
|
|
use ieee.numeric_std.all;
|
66 |
|
|
use std.textio.all;
|
67 |
|
|
use work.math_lib.all;
|
68 |
|
|
|
69 |
|
|
package rng_lib is
|
70 |
|
|
|
71 |
7 |
gedra |
type distribution is (UNIFORM, GAUSSIAN, EXPONENTIAL);
|
72 |
|
|
type rand_var is record -- random variable record
|
73 |
|
|
rnd : real; -- random number
|
74 |
|
|
rnd_v : unsigned(31 downto 0); -- random number vector
|
75 |
|
|
dist : distribution; -- distribution type
|
76 |
|
|
y, z : real; -- distribution parameters
|
77 |
|
|
s1, s2, s3 : unsigned(31 downto 0); -- seeds
|
78 |
|
|
mask1, mask2, mask3 : unsigned(31 downto 0);
|
79 |
|
|
shft1, shft2, shft3 : natural;
|
80 |
|
|
end record;
|
81 |
4 |
gedra |
|
82 |
7 |
gedra |
function rand (rnd : rand_var) return rand_var;
|
83 |
|
|
function init_uniform(constant a, b, c : natural;
|
84 |
|
|
constant lo, hi : real) return rand_var;
|
85 |
|
|
function init_gaussian(constant a, b, c : natural;
|
86 |
|
|
constant mean, stdev : real) return rand_var;
|
87 |
|
|
function init_exponential(constant a, b, c : natural;
|
88 |
|
|
constant mean : real) return rand_var;
|
89 |
|
|
|
90 |
|
|
constant q1 : natural := 13;
|
91 |
|
|
constant q2 : natural := 2;
|
92 |
|
|
constant q3 : natural := 3;
|
93 |
|
|
constant p1 : natural := 12;
|
94 |
|
|
constant p2 : natural := 4;
|
95 |
|
|
constant p3 : natural := 17;
|
96 |
|
|
|
97 |
4 |
gedra |
end rng_lib;
|
98 |
|
|
|
99 |
|
|
package body rng_lib is
|
100 |
|
|
|
101 |
|
|
-- Function to convert 32bit unsigned vector to real
|
102 |
|
|
-- Integers only go to 2**31 (VHDL'87), so do it clever
|
103 |
7 |
gedra |
function unsigned_2_real (constant a : unsigned(31 downto 0)) return real is
|
104 |
|
|
variable r : real;
|
105 |
|
|
begin
|
106 |
|
|
r := 2.0*real(to_integer(a(31 downto 1)));
|
107 |
|
|
if a(0) = '1' then
|
108 |
|
|
r := r + 1.0;
|
109 |
|
|
end if;
|
110 |
|
|
return(r);
|
111 |
|
|
end unsigned_2_real;
|
112 |
|
|
|
113 |
4 |
gedra |
-- Generate random number using a combination of 3 tausworthe generators
|
114 |
|
|
-- Source: Pierre L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
|
115 |
|
|
-- Generators". Mathematics of Computation, vol.65, no.213(1996), pp203--213.
|
116 |
7 |
gedra |
function rng (rnd : rand_var) return rand_var is
|
117 |
|
|
variable new_rnd : rand_var;
|
118 |
|
|
variable b : unsigned(31 downto 0);
|
119 |
|
|
begin
|
120 |
|
|
new_rnd := rnd;
|
121 |
|
|
b := ((new_rnd.s1 sll q1) xor new_rnd.s1) srl new_rnd.shft1;
|
122 |
|
|
new_rnd.s1 := ((new_rnd.s1 and new_rnd.mask1) sll p1) xor b;
|
123 |
|
|
b := ((new_rnd.s2 sll q2) xor new_rnd.s2) srl new_rnd.shft2;
|
124 |
|
|
new_rnd.s2 := ((new_rnd.s2 and new_rnd.mask2) sll p2) xor b;
|
125 |
|
|
b := ((new_rnd.s3 sll q3) xor new_rnd.s3) srl new_rnd.shft3;
|
126 |
|
|
new_rnd.s3 := ((new_rnd.s3 and new_rnd.mask3) sll p3) xor b;
|
127 |
|
|
new_rnd.rnd_v := new_rnd.s1 xor new_rnd.s2 xor new_rnd.s3;
|
128 |
|
|
-- normalize to range [0,1)
|
129 |
|
|
new_rnd.rnd := unsigned_2_real(new_rnd.rnd_v) / 65536.0;
|
130 |
|
|
new_rnd.rnd := new_rnd.rnd / 65536.0;
|
131 |
|
|
return (new_rnd);
|
132 |
|
|
end rng;
|
133 |
4 |
gedra |
|
134 |
|
|
-- rand function generates a random variable with different distributions
|
135 |
7 |
gedra |
function rand (rnd : rand_var) return rand_var is
|
136 |
|
|
variable rnd_out : rand_var;
|
137 |
|
|
variable x, y, z : real;
|
138 |
|
|
variable t : real := 0.0;
|
139 |
|
|
begin
|
140 |
|
|
case rnd.dist is
|
141 |
|
|
-- Uniform distribution
|
142 |
|
|
when UNIFORM =>
|
143 |
|
|
rnd_out := rng(rnd);
|
144 |
|
|
rnd_out.rnd := rnd.y + (rnd_out.rnd * (rnd.z - rnd.y));
|
145 |
|
|
-- Gaussian distribution
|
146 |
|
|
when GAUSSIAN => -- Box-Mueller method
|
147 |
|
|
z := 2.0;
|
148 |
|
|
rnd_out := rnd;
|
149 |
|
|
while z > 1.0 or z = 0.0 loop
|
150 |
|
|
-- choose x,y in uniform square (-1,-1) to (+1,+1)
|
151 |
|
|
rnd_out := rng(rnd_out);
|
152 |
|
|
x := -1.0 + 2.0 * rnd_out.rnd;
|
153 |
|
|
rnd_out := rng(rnd_out);
|
154 |
|
|
y := -1.0 + 2.0 * rnd_out.rnd;
|
155 |
|
|
z := (x * x) + (y * y);
|
156 |
|
|
end loop;
|
157 |
|
|
-- Box-Mueller transform
|
158 |
11 |
gedra |
rnd_out.rnd := rnd_out.y + rnd_out.z * y * sqrt(-2.0 * ln(z)/z);
|
159 |
7 |
gedra |
-- Exponential distribution
|
160 |
|
|
when EXPONENTIAL =>
|
161 |
|
|
rnd_out := rng(rnd);
|
162 |
|
|
rnd_out.rnd := -rnd_out.y * log(1.0 - rnd_out.rnd);
|
163 |
|
|
when others =>
|
164 |
|
|
report "rand() function encountered an error!"
|
165 |
|
|
severity failure;
|
166 |
|
|
end case;
|
167 |
|
|
return (rnd_out);
|
168 |
|
|
end rand;
|
169 |
4 |
gedra |
|
170 |
|
|
-- Initialize seeds, used by all init_ functions
|
171 |
7 |
gedra |
function gen_seed (constant a, b, c : natural) return rand_var is
|
172 |
|
|
variable seeded : rand_var;
|
173 |
|
|
variable x : unsigned(31 downto 0) := "11111111111111111111111111111111";
|
174 |
|
|
constant k1 : natural := 31;
|
175 |
|
|
constant k2 : natural := 29;
|
176 |
|
|
constant k3 : natural := 28;
|
177 |
|
|
begin
|
178 |
|
|
seeded.shft1 := k1-p1;
|
179 |
|
|
seeded.shft2 := k2-p2;
|
180 |
|
|
seeded.shft3 := k3-p3;
|
181 |
|
|
seeded.mask1 := x sll (32-k1);
|
182 |
|
|
seeded.mask2 := x sll (32-k2);
|
183 |
|
|
seeded.mask3 := x sll (32-k3);
|
184 |
|
|
seeded.s1 := to_unsigned(390451501, 32);
|
185 |
|
|
seeded.s2 := to_unsigned(613566701, 32);
|
186 |
|
|
seeded.s3 := to_unsigned(858993401, 32);
|
187 |
|
|
if to_unsigned(a, 32) > (to_unsigned(1, 32) sll (32-k1)) then
|
188 |
|
|
seeded.s1 := to_unsigned(a, 32);
|
189 |
|
|
end if;
|
190 |
|
|
if to_unsigned(b, 32) > (to_unsigned(1, 32) sll (32-k2)) then
|
191 |
|
|
seeded.s2 := to_unsigned(b, 32);
|
192 |
|
|
end if;
|
193 |
|
|
if to_unsigned(c, 32) > (to_unsigned(1, 32) sll (32-k3)) then
|
194 |
|
|
seeded.s3 := to_unsigned(c, 32);
|
195 |
|
|
end if;
|
196 |
|
|
return(seeded);
|
197 |
|
|
end gen_seed;
|
198 |
|
|
|
199 |
4 |
gedra |
-- Uniform distribution random variable initialization
|
200 |
|
|
-- a,b,c are seeds
|
201 |
|
|
-- lo,hi is the range for the uniform distribution
|
202 |
7 |
gedra |
function init_uniform(constant a, b, c : natural;
|
203 |
|
|
constant lo, hi : real) return rand_var is
|
204 |
|
|
variable rnd, rout : rand_var;
|
205 |
|
|
begin
|
206 |
|
|
if lo >= hi then
|
207 |
|
|
report "Uniform parameter error: 'hi' must be > 'lo'!"
|
208 |
|
|
severity failure;
|
209 |
|
|
end if;
|
210 |
|
|
rnd := gen_seed(a, b, c);
|
211 |
|
|
rnd.dist := UNIFORM;
|
212 |
|
|
rnd.y := lo;
|
213 |
|
|
rnd.z := hi;
|
214 |
|
|
rout := rand(rnd);
|
215 |
|
|
return(rout);
|
216 |
|
|
end init_uniform;
|
217 |
4 |
gedra |
|
218 |
|
|
-- Gaussian distribution random variable initialization
|
219 |
|
|
-- a,b,c are seeds
|
220 |
|
|
-- mean,stdev is mean and standard deviation
|
221 |
7 |
gedra |
function init_gaussian(constant a, b, c : natural;
|
222 |
|
|
constant mean, stdev : real) return rand_var is
|
223 |
|
|
variable rnd, rout : rand_var;
|
224 |
|
|
begin
|
225 |
|
|
if stdev = 0.0 then
|
226 |
|
|
report "Gaussian parameter error: 'stdev' must be non-zero!"
|
227 |
|
|
severity failure;
|
228 |
|
|
end if;
|
229 |
|
|
rnd := gen_seed(a, b, c);
|
230 |
|
|
rnd.dist := GAUSSIAN;
|
231 |
|
|
rnd.y := mean;
|
232 |
|
|
rnd.z := stdev;
|
233 |
|
|
rout := rand(rnd);
|
234 |
|
|
return(rout);
|
235 |
|
|
end init_gaussian;
|
236 |
4 |
gedra |
|
237 |
|
|
-- Exponential distribution random variable initialization
|
238 |
|
|
-- a,b,c are seeds
|
239 |
|
|
-- mean: mean value
|
240 |
7 |
gedra |
function init_exponential(constant a, b, c : natural;
|
241 |
|
|
constant mean : real) return rand_var is
|
242 |
|
|
variable rnd, rout : rand_var;
|
243 |
|
|
begin
|
244 |
|
|
if mean <= 0.0 then
|
245 |
|
|
report "Exponential parameter error: 'mean' must be > 0!"
|
246 |
|
|
severity failure;
|
247 |
|
|
end if;
|
248 |
|
|
rnd := gen_seed(a, b, c);
|
249 |
|
|
rnd.dist := EXPONENTIAL;
|
250 |
|
|
rnd.y := mean;
|
251 |
|
|
rout := rand(rnd);
|
252 |
|
|
return(rout);
|
253 |
|
|
end init_exponential;
|
254 |
|
|
|
255 |
4 |
gedra |
end rng_lib;
|