1 |
2 |
jorisvr |
--
|
2 |
|
|
-- Front-end for SpaceWire Receiver
|
3 |
|
|
--
|
4 |
|
|
-- This entity samples the input signals DataIn and StrobeIn to detect
|
5 |
|
|
-- valid bit transitions. Received bits are handed to the application
|
6 |
|
|
-- in groups of "rxchunk" bits at a time, synchronous to the system clock.
|
7 |
|
|
--
|
8 |
|
|
-- This receiver is based on synchronous oversampling of the input signals.
|
9 |
|
|
-- Inputs are sampled on the rising and falling edges of an externally
|
10 |
|
|
-- supplied sample clock "rxclk". Therefore the maximum bitrate of the
|
11 |
|
|
-- incoming signal must be significantly lower than two times the "rxclk"
|
12 |
|
|
-- clock frequency. The maximum incoming bitrate must also be strictly
|
13 |
|
|
-- lower than rxchunk times the system clock frequency.
|
14 |
|
|
--
|
15 |
|
|
-- This code is tuned for implementation on Xilinx Spartan-3.
|
16 |
|
|
--
|
17 |
|
|
-- Details
|
18 |
|
|
-- -------
|
19 |
|
|
--
|
20 |
|
|
-- Stage A: The inputs "spw_di" and "spw_si" are handled as DDR signals,
|
21 |
|
|
-- synchronously sampled on both edges of "rxclk".
|
22 |
|
|
--
|
23 |
|
|
-- Stage B: The input signals are re-registered on the rising edge of "rxclk"
|
24 |
|
|
-- for further processing. This implies that every rising edge of "rxclk"
|
25 |
|
|
-- produces two new samples of "spw_di" and two new samples of "spw_si".
|
26 |
|
|
-- Some preparation is done for data/strobe decoding.
|
27 |
|
|
--
|
28 |
|
|
-- Stage C: Transitions in input signals are detected by comparing the XOR
|
29 |
|
|
-- of data and strobe to the XOR of the previous data and strobe samples.
|
30 |
|
|
-- If there is a difference, we know that either data or strobe has changed
|
31 |
|
|
-- and the new value of data is a valid new bit. Every rising edge of "rxclk"
|
32 |
|
|
-- thus produces either zero, one or two new data bits.
|
33 |
|
|
--
|
34 |
|
|
-- Received data bits are pushed into a cyclic buffer. A two-hot array marks
|
35 |
|
|
-- the two positions where the next received bits will go into the buffer.
|
36 |
|
|
-- In addition, a 4-step gray-encoded counter "headptr" indicates the current
|
37 |
|
|
-- position in the cyclic buffer.
|
38 |
|
|
--
|
39 |
|
|
-- The contents of the cyclic buffer and the head pointer are re-registered
|
40 |
|
|
-- on the rising edge of the system clock. A binary counter "tailptr" points
|
41 |
|
|
-- to next group of bits to read from the cyclic buffer. A comparison between
|
42 |
|
|
-- "tailptr" and "headptr" determines whether those bits have already been
|
43 |
|
|
-- received and safely stored in the buffer.
|
44 |
|
|
--
|
45 |
|
|
-- Implementation guidelines
|
46 |
|
|
-- -------------------------
|
47 |
|
|
--
|
48 |
|
|
-- IOB flip-flops must be used to sample spw_di and spw_si.
|
49 |
|
|
-- Clock skew between the IOBs for spw_di and spw_si must be minimized.
|
50 |
|
|
--
|
51 |
|
|
-- "rxclk" must be at least as fast as the system clock;
|
52 |
|
|
-- "rxclk" does not need to be phase-related to the system clock;
|
53 |
|
|
-- it is allowed for "rxclk" to be equal to the system clock.
|
54 |
|
|
--
|
55 |
|
|
-- The following timing constraints are needed:
|
56 |
|
|
-- * PERIOD constraint on the system clock;
|
57 |
|
|
-- * PERIOD constraint on "rxclk";
|
58 |
|
|
-- * FROM-TO constraint from "rxclk" to system clock, equal to one "rxclk" period;
|
59 |
|
|
-- * FROM-TO constraint from system clock to "rxclk", equal to one "rxclk" period.
|
60 |
|
|
--
|
61 |
|
|
|
62 |
|
|
library ieee;
|
63 |
|
|
use ieee.std_logic_1164.all;
|
64 |
|
|
use ieee.numeric_std.all;
|
65 |
|
|
|
66 |
|
|
entity spwrecvfront_fast is
|
67 |
|
|
|
68 |
|
|
generic (
|
69 |
|
|
-- Number of bits to pass to the application per system clock.
|
70 |
|
|
rxchunk: integer range 1 to 4 );
|
71 |
|
|
|
72 |
|
|
port (
|
73 |
|
|
-- System clock.
|
74 |
|
|
clk: in std_logic;
|
75 |
|
|
|
76 |
|
|
-- Sample clock.
|
77 |
|
|
rxclk: in std_logic;
|
78 |
|
|
|
79 |
|
|
-- High to enable receiver; low to disable and reset receiver.
|
80 |
|
|
rxen: in std_logic;
|
81 |
|
|
|
82 |
|
|
-- High if there has been recent activity on the input lines.
|
83 |
|
|
inact: out std_logic;
|
84 |
|
|
|
85 |
|
|
-- High if inbits contains a valid group of received bits.
|
86 |
|
|
-- If inbvalid='1', the application must sample inbits on
|
87 |
|
|
-- the rising edge of clk.
|
88 |
|
|
inbvalid: out std_logic;
|
89 |
|
|
|
90 |
|
|
-- Received bits (bit 0 is the earliest received bit).
|
91 |
|
|
inbits: out std_logic_vector(rxchunk-1 downto 0);
|
92 |
|
|
|
93 |
|
|
-- Data In signal from SpaceWire bus.
|
94 |
|
|
spw_di: in std_logic;
|
95 |
|
|
|
96 |
|
|
-- Strobe In signal from SpaceWire bus.
|
97 |
|
|
spw_si: in std_logic );
|
98 |
|
|
|
99 |
|
|
-- Turn off FSM extraction.
|
100 |
|
|
-- Without this, XST will happily apply one-hot encoding to rrx.headptr.
|
101 |
|
|
attribute FSM_EXTRACT: string;
|
102 |
|
|
attribute FSM_EXTRACT of spwrecvfront_fast: entity is "NO";
|
103 |
|
|
|
104 |
|
|
-- Turn off register replication.
|
105 |
|
|
-- Without this, XST will happily replicate my synchronization flip-flops.
|
106 |
|
|
attribute REGISTER_DUPLICATION: string;
|
107 |
|
|
attribute REGISTER_DUPLICATION of spwrecvfront_fast: entity is "FALSE";
|
108 |
|
|
|
109 |
|
|
end entity spwrecvfront_fast;
|
110 |
|
|
|
111 |
|
|
architecture spwrecvfront_arch of spwrecvfront_fast is
|
112 |
|
|
|
113 |
|
|
-- size of the cyclic buffer in bits;
|
114 |
|
|
-- typically 4 times rxchunk, except when rxchunk = 1
|
115 |
|
|
type chunk_array_type is array(1 to 4) of integer;
|
116 |
|
|
constant chunk_to_buflen: chunk_array_type := ( 8, 8, 12, 16 );
|
117 |
|
|
constant c_buflen: integer := chunk_to_buflen(rxchunk);
|
118 |
|
|
|
119 |
|
|
-- convert from straight binary to reflected binary gray code
|
120 |
|
|
function gray_encode(b: in std_logic_vector) return std_logic_vector is
|
121 |
|
|
variable g: std_logic_vector(b'high downto b'low);
|
122 |
|
|
begin
|
123 |
|
|
g(b'high) := b(b'high);
|
124 |
|
|
for i in b'high-1 downto b'low loop
|
125 |
|
|
g(i) := b(i) xor b(i+1);
|
126 |
|
|
end loop;
|
127 |
|
|
return g;
|
128 |
|
|
end function;
|
129 |
|
|
|
130 |
|
|
-- convert from reflected binary gray code to straight binary
|
131 |
|
|
function gray_decode(g: in std_logic_vector) return std_logic_vector is
|
132 |
|
|
variable b: std_logic_vector(g'high downto g'low);
|
133 |
|
|
begin
|
134 |
|
|
b(g'high) := g(g'high);
|
135 |
|
|
for i in g'high-1 downto g'low loop
|
136 |
|
|
b(i) := g(i) xor b(i+1);
|
137 |
|
|
end loop;
|
138 |
|
|
return b;
|
139 |
|
|
end function;
|
140 |
|
|
|
141 |
|
|
-- stage A: input flip-flops for rising/falling rxclk
|
142 |
|
|
signal s_a_di0: std_logic;
|
143 |
|
|
signal s_a_di1: std_logic;
|
144 |
|
|
signal s_a_si0: std_logic;
|
145 |
|
|
signal s_a_si1: std_logic;
|
146 |
|
|
|
147 |
|
|
-- registers in rxclk domain
|
148 |
|
|
type rxregs_type is record
|
149 |
|
|
-- reset synchronizer
|
150 |
|
|
reset: std_logic_vector(1 downto 0);
|
151 |
|
|
-- stage B: re-register input samples and prepare for data/strobe decoding
|
152 |
|
|
b_di0: std_ulogic;
|
153 |
|
|
b_di1: std_ulogic;
|
154 |
|
|
b_si1: std_ulogic;
|
155 |
|
|
b_xor0: std_ulogic; -- b_xor0 = b_di0 xor b_si0
|
156 |
|
|
-- stage C: after data/strobe decoding
|
157 |
|
|
c_bit: std_logic_vector(1 downto 0);
|
158 |
|
|
c_val: std_logic_vector(1 downto 0);
|
159 |
|
|
c_xor1: std_ulogic;
|
160 |
|
|
-- cyclic bit buffer
|
161 |
|
|
bufdata: std_logic_vector(c_buflen-1 downto 0); -- data bits
|
162 |
|
|
bufmark: std_logic_vector(c_buflen-1 downto 0); -- two-hot, marking destination of next two bits
|
163 |
|
|
headptr: std_logic_vector(1 downto 0); -- gray encoded head position
|
164 |
|
|
headlow: std_logic_vector(1 downto 0); -- least significant bits of head position
|
165 |
|
|
headinc: std_ulogic; -- must update headptr on next clock
|
166 |
|
|
-- activity detection
|
167 |
|
|
bitcnt: std_logic_vector(2 downto 0); -- gray counter
|
168 |
|
|
end record;
|
169 |
|
|
|
170 |
|
|
-- registers in system clock domain
|
171 |
|
|
type regs_type is record
|
172 |
|
|
-- cyclic bit buffer, re-registered to the system clock
|
173 |
|
|
bufdata: std_logic_vector(c_buflen-1 downto 0); -- data bits
|
174 |
|
|
headptr: std_logic_vector(1 downto 0); -- gray encoded head position
|
175 |
|
|
-- tail pointer (binary)
|
176 |
|
|
tailptr: std_logic_vector(2 downto 0);
|
177 |
|
|
-- activity detection
|
178 |
|
|
bitcnt: std_logic_vector(2 downto 0);
|
179 |
|
|
bitcntp: std_logic_vector(2 downto 0);
|
180 |
|
|
bitcntpp: std_logic_vector(2 downto 0);
|
181 |
|
|
-- output registers
|
182 |
|
|
inact: std_ulogic;
|
183 |
|
|
inbvalid: std_ulogic;
|
184 |
|
|
inbits: std_logic_vector(rxchunk-1 downto 0);
|
185 |
|
|
rxen: std_ulogic;
|
186 |
|
|
end record;
|
187 |
|
|
|
188 |
|
|
-- registers
|
189 |
|
|
signal r, rin: regs_type;
|
190 |
|
|
signal rrx, rrxin: rxregs_type;
|
191 |
|
|
|
192 |
|
|
-- force use of IOB flip-flops
|
193 |
|
|
attribute IOB: string;
|
194 |
|
|
attribute IOB of s_a_di0: signal is "TRUE";
|
195 |
|
|
attribute IOB of s_a_di1: signal is "TRUE";
|
196 |
|
|
attribute IOB of s_a_si0: signal is "TRUE";
|
197 |
|
|
attribute IOB of s_a_si1: signal is "TRUE";
|
198 |
|
|
|
199 |
|
|
begin
|
200 |
|
|
|
201 |
|
|
-- sample inputs on rising edge of rxclk
|
202 |
|
|
process (rxclk) is
|
203 |
|
|
begin
|
204 |
|
|
if rising_edge(rxclk) then
|
205 |
|
|
s_a_di0 <= spw_di;
|
206 |
|
|
s_a_si0 <= spw_si;
|
207 |
|
|
end if;
|
208 |
|
|
end process;
|
209 |
|
|
|
210 |
|
|
-- sample inputs on falling edge of rxclk
|
211 |
|
|
process (rxclk) is
|
212 |
|
|
begin
|
213 |
|
|
if falling_edge(rxclk) then
|
214 |
|
|
s_a_di1 <= spw_di;
|
215 |
|
|
s_a_si1 <= spw_si;
|
216 |
|
|
end if;
|
217 |
|
|
end process;
|
218 |
|
|
|
219 |
|
|
-- combinatorial process
|
220 |
|
|
process (r, rrx, rxen, s_a_di0, s_a_di1, s_a_si0, s_a_si1)
|
221 |
|
|
variable v: regs_type;
|
222 |
|
|
variable vrx: rxregs_type;
|
223 |
|
|
variable v_i: integer range 0 to 7;
|
224 |
|
|
variable v_tail: std_logic_vector(1 downto 0);
|
225 |
|
|
begin
|
226 |
|
|
v := r;
|
227 |
|
|
vrx := rrx;
|
228 |
|
|
v_i := 0;
|
229 |
|
|
v_tail := (others => '0');
|
230 |
|
|
|
231 |
|
|
-- ---- SAMPLE CLOCK DOMAIN ----
|
232 |
|
|
|
233 |
|
|
-- stage B: re-register input samples
|
234 |
|
|
vrx.b_di0 := s_a_di0;
|
235 |
|
|
vrx.b_di1 := s_a_di1;
|
236 |
|
|
vrx.b_xor0 := s_a_di0 xor s_a_si0;
|
237 |
|
|
vrx.b_si1 := s_a_si1;
|
238 |
|
|
|
239 |
|
|
-- stage C: decode data/strobe and detect valid bits
|
240 |
|
|
if (rrx.b_xor0 xor rrx.c_xor1) = '1' then
|
241 |
|
|
-- b_di0 is a valid new bit
|
242 |
|
|
vrx.c_bit(0) := rrx.b_di0;
|
243 |
|
|
else
|
244 |
|
|
-- skip b_di0 and try b_di1
|
245 |
|
|
vrx.c_bit(0) := rrx.b_di1;
|
246 |
|
|
end if;
|
247 |
|
|
vrx.c_bit(1) := rrx.b_di1;
|
248 |
|
|
vrx.c_val(0) := (rrx.b_xor0 xor rrx.c_xor1) or (rrx.b_di1 xor rrx.b_si1 xor rrx.b_xor0);
|
249 |
|
|
vrx.c_val(1) := (rrx.b_xor0 xor rrx.c_xor1) and (rrx.b_di1 xor rrx.b_si1 xor rrx.b_xor0);
|
250 |
|
|
vrx.c_xor1 := rrx.b_di1 xor rrx.b_si1;
|
251 |
|
|
|
252 |
|
|
-- Note:
|
253 |
|
|
-- c_val = "00" if no new bits are received
|
254 |
|
|
-- c_val = "01" if one new bit is received; the new bit is in c_bit(0)
|
255 |
|
|
-- c_val = "11" if two new bits are received
|
256 |
|
|
|
257 |
|
|
-- Note:
|
258 |
|
|
-- bufmark contains two '1' bits in neighbouring positions, marking
|
259 |
|
|
-- the positions that newly received bits will be written to.
|
260 |
|
|
|
261 |
|
|
-- Update the cyclic buffer.
|
262 |
|
|
for i in 0 to c_buflen-1 loop
|
263 |
|
|
-- update data bit at position (i)
|
264 |
|
|
if rrx.bufmark(i) = '1' then
|
265 |
|
|
if rrx.bufmark((i+1) mod rrx.bufmark'length) = '1' then
|
266 |
|
|
-- this is the first of the two marked positions;
|
267 |
|
|
-- put the first received bit here (if any)
|
268 |
|
|
vrx.bufdata(i) := rrx.c_bit(0);
|
269 |
|
|
else
|
270 |
|
|
-- this is the second of the two marked positions;
|
271 |
|
|
-- put the second received bit here (if any)
|
272 |
|
|
vrx.bufdata(i) := rrx.c_bit(1);
|
273 |
|
|
end if;
|
274 |
|
|
end if;
|
275 |
|
|
-- update marker at position (i)
|
276 |
|
|
if rrx.c_val(0) = '1' then
|
277 |
|
|
if rrx.c_val(1) = '1' then
|
278 |
|
|
-- shift two positions
|
279 |
|
|
vrx.bufmark(i) := rrx.bufmark((i+rrx.bufmark'length-2) mod rrx.bufmark'length);
|
280 |
|
|
else
|
281 |
|
|
-- shift one position
|
282 |
|
|
vrx.bufmark(i) := rrx.bufmark((i+rrx.bufmark'length-1) mod rrx.bufmark'length);
|
283 |
|
|
end if;
|
284 |
|
|
end if;
|
285 |
|
|
end loop;
|
286 |
|
|
|
287 |
|
|
-- Update "headlow", the least significant bits of the head position.
|
288 |
|
|
-- This is a binary counter from 0 to rxchunk-1, or from 0 to 1
|
289 |
|
|
-- if rxchunk = 1. If the counter overflows, "headptr" will be
|
290 |
|
|
-- updated in the next clock cycle.
|
291 |
|
|
case rxchunk is
|
292 |
|
|
when 1 | 2 =>
|
293 |
|
|
-- count from "00" to "01"
|
294 |
|
|
if rrx.c_val(1) = '1' then -- got two new bits
|
295 |
|
|
vrx.headlow(0) := rrx.headlow(0);
|
296 |
|
|
vrx.headinc := '1';
|
297 |
|
|
elsif rrx.c_val(0) = '1' then -- got one new bit
|
298 |
|
|
vrx.headlow(0) := not rrx.headlow(0);
|
299 |
|
|
vrx.headinc := rrx.headlow(0);
|
300 |
|
|
else -- got nothing
|
301 |
|
|
vrx.headlow(0) := rrx.headlow(0);
|
302 |
|
|
vrx.headinc := '0';
|
303 |
|
|
end if;
|
304 |
|
|
when 3 =>
|
305 |
|
|
-- count from "00" to "10"
|
306 |
|
|
if rrx.c_val(1) = '1' then -- got two new bits
|
307 |
|
|
case rrx.headlow is
|
308 |
|
|
when "00" => vrx.headlow := "10";
|
309 |
|
|
when "01" => vrx.headlow := "00";
|
310 |
|
|
when others => vrx.headlow := "01";
|
311 |
|
|
end case;
|
312 |
|
|
vrx.headinc := rrx.headlow(0) or rrx.headlow(1);
|
313 |
|
|
elsif rrx.c_val(0) = '1' then -- got one new bit
|
314 |
|
|
if rrx.headlow(1) = '1' then
|
315 |
|
|
vrx.headlow := "00";
|
316 |
|
|
vrx.headinc := '1';
|
317 |
|
|
else
|
318 |
|
|
vrx.headlow(0) := not rrx.headlow(0);
|
319 |
|
|
vrx.headlow(1) := rrx.headlow(0);
|
320 |
|
|
vrx.headinc := '0';
|
321 |
|
|
end if;
|
322 |
|
|
else -- got nothing
|
323 |
|
|
vrx.headlow := rrx.headlow;
|
324 |
|
|
vrx.headinc := '0';
|
325 |
|
|
end if;
|
326 |
|
|
when 4 =>
|
327 |
|
|
-- count from "00" to "11"
|
328 |
|
|
if rrx.c_val(1) = '1' then -- got two new bits
|
329 |
|
|
vrx.headlow(0) := rrx.headlow(0);
|
330 |
|
|
vrx.headlow(1) := not rrx.headlow(1);
|
331 |
|
|
vrx.headinc := rrx.headlow(1);
|
332 |
|
|
elsif rrx.c_val(0) = '1' then -- got one new bit
|
333 |
|
|
vrx.headlow(0) := not rrx.headlow(0);
|
334 |
|
|
vrx.headlow(1) := rrx.headlow(1) xor rrx.headlow(0);
|
335 |
|
|
vrx.headinc := rrx.headlow(0) and rrx.headlow(1);
|
336 |
|
|
else -- got nothing
|
337 |
|
|
vrx.headlow := rrx.headlow;
|
338 |
|
|
vrx.headinc := '0';
|
339 |
|
|
end if;
|
340 |
|
|
end case;
|
341 |
|
|
|
342 |
|
|
-- Update the gray-encoded head position.
|
343 |
|
|
if rrx.headinc = '1' then
|
344 |
|
|
case rrx.headptr is
|
345 |
|
|
when "00" => vrx.headptr := "01";
|
346 |
|
|
when "01" => vrx.headptr := "11";
|
347 |
|
|
when "11" => vrx.headptr := "10";
|
348 |
|
|
when others => vrx.headptr := "00";
|
349 |
|
|
end case;
|
350 |
|
|
end if;
|
351 |
|
|
|
352 |
|
|
-- Activity detection.
|
353 |
|
|
if rrx.c_val(0) = '1' then
|
354 |
|
|
vrx.bitcnt := gray_encode(
|
355 |
|
|
std_logic_vector(unsigned(gray_decode(rrx.bitcnt)) + 1));
|
356 |
|
|
end if;
|
357 |
|
|
|
358 |
|
|
-- Synchronize reset signal for rxclk domain.
|
359 |
|
|
if r.rxen = '0' then
|
360 |
|
|
vrx.reset := "11";
|
361 |
|
|
else
|
362 |
|
|
vrx.reset := "0" & rrx.reset(1);
|
363 |
|
|
end if;
|
364 |
|
|
|
365 |
|
|
-- Synchronous reset of rxclk domain.
|
366 |
|
|
if rrx.reset(0) = '1' then
|
367 |
|
|
vrx.bufmark := (0 => '1', 1 => '1', others => '0');
|
368 |
|
|
vrx.headptr := "00";
|
369 |
|
|
vrx.headlow := "00";
|
370 |
|
|
vrx.headinc := '0';
|
371 |
|
|
vrx.bitcnt := "000";
|
372 |
|
|
end if;
|
373 |
|
|
|
374 |
|
|
-- ---- SYSTEM CLOCK DOMAIN ----
|
375 |
|
|
|
376 |
|
|
-- Re-register cyclic buffer and head pointer in the system clock domain.
|
377 |
|
|
v.bufdata := rrx.bufdata;
|
378 |
|
|
v.headptr := rrx.headptr;
|
379 |
|
|
|
380 |
|
|
-- Increment tailptr if there was new data on the previous clock.
|
381 |
|
|
if r.inbvalid = '1' then
|
382 |
|
|
v.tailptr := std_logic_vector(unsigned(r.tailptr) + 1);
|
383 |
|
|
end if;
|
384 |
|
|
|
385 |
|
|
-- Compare tailptr to headptr to decide whether there is new data.
|
386 |
|
|
-- If the values are equal, we are about to read data which were not
|
387 |
|
|
-- yet released by the rxclk domain
|
388 |
|
|
-- Note: headptr is gray-coded while tailptr is normal binary.
|
389 |
|
|
if rxchunk = 1 then
|
390 |
|
|
-- headptr counts blocks of 2 bits while tailptr counts single bits
|
391 |
|
|
v_tail := v.tailptr(2 downto 1);
|
392 |
|
|
else
|
393 |
|
|
-- headptr and tailptr both count blocks of rxchunk bits
|
394 |
|
|
v_tail := v.tailptr(1 downto 0);
|
395 |
|
|
end if;
|
396 |
|
|
if (r.headptr(1) = v_tail(1)) and
|
397 |
|
|
((r.headptr(0) xor r.headptr(1)) = v_tail(0)) then
|
398 |
|
|
-- pointers have the same value
|
399 |
|
|
v.inbvalid := '0';
|
400 |
|
|
else
|
401 |
|
|
v.inbvalid := '1';
|
402 |
|
|
end if;
|
403 |
|
|
|
404 |
|
|
-- Multiplex bits from the cyclic buffer into the output register.
|
405 |
|
|
if rxen = '1' then
|
406 |
|
|
if rxchunk = 1 then
|
407 |
|
|
-- cyclic buffer contains 8 slots of 1 bit wide
|
408 |
|
|
v_i := to_integer(unsigned(v.tailptr));
|
409 |
|
|
v.inbits := r.bufdata(v_i downto v_i);
|
410 |
|
|
else
|
411 |
|
|
-- cyclic buffer contains 4 slots of rxchunk bits wide
|
412 |
|
|
v_i := to_integer(unsigned(v.tailptr(1 downto 0)));
|
413 |
|
|
v.inbits := r.bufdata(rxchunk*v_i+rxchunk-1 downto rxchunk*v_i);
|
414 |
|
|
end if;
|
415 |
|
|
end if;
|
416 |
|
|
|
417 |
|
|
-- Activity detection.
|
418 |
|
|
v.bitcnt := rrx.bitcnt;
|
419 |
|
|
v.bitcntp := r.bitcnt;
|
420 |
|
|
v.bitcntpp := r.bitcntp;
|
421 |
|
|
if rxen = '1' then
|
422 |
|
|
if r.bitcntp = r.bitcntpp then
|
423 |
|
|
v.inact := r.inbvalid;
|
424 |
|
|
else
|
425 |
|
|
v.inact := '1';
|
426 |
|
|
end if;
|
427 |
|
|
end if;
|
428 |
|
|
|
429 |
|
|
-- Synchronous reset of system clock domain.
|
430 |
|
|
if rxen = '0' then
|
431 |
|
|
v.tailptr := "000";
|
432 |
|
|
v.inact := '0';
|
433 |
|
|
v.inbvalid := '0';
|
434 |
|
|
v.inbits := (others => '0');
|
435 |
|
|
end if;
|
436 |
|
|
|
437 |
|
|
-- Register rxen to ensure glitch-free signal to rxclk domain
|
438 |
|
|
v.rxen := rxen;
|
439 |
|
|
|
440 |
|
|
-- drive outputs
|
441 |
|
|
inact <= r.inact;
|
442 |
|
|
inbvalid <= r.inbvalid;
|
443 |
|
|
inbits <= r.inbits;
|
444 |
|
|
|
445 |
|
|
-- update registers
|
446 |
|
|
rrxin <= vrx;
|
447 |
|
|
rin <= v;
|
448 |
|
|
|
449 |
|
|
end process;
|
450 |
|
|
|
451 |
|
|
-- update registers on rising edge of rxclk
|
452 |
|
|
process (rxclk) is
|
453 |
|
|
begin
|
454 |
|
|
if rising_edge(rxclk) then
|
455 |
|
|
rrx <= rrxin;
|
456 |
|
|
end if;
|
457 |
|
|
end process;
|
458 |
|
|
|
459 |
|
|
-- update registers on rising edge of system clock
|
460 |
|
|
process (clk) is
|
461 |
|
|
begin
|
462 |
|
|
if rising_edge(clk) then
|
463 |
|
|
r <= rin;
|
464 |
|
|
end if;
|
465 |
|
|
end process;
|
466 |
|
|
|
467 |
|
|
end architecture spwrecvfront_arch;
|