URL
https://opencores.org/ocsvn/raytrac/raytrac/trunk
Subversion Repositories raytrac
Compare Revisions
- This comparison shows the changes necessary to convert path
/raytrac/branches/fp
- from Rev 142 to Rev 141
- ↔ Reverse comparison
Rev 142 → Rev 141
/customCounter.vhd
File deleted
\ No newline at end of file
/dpc.vhd
29,7 → 29,7
--!external_readable_widthad : integer := integer(ceil(log(real(external_readable_blocks),2.0)))) |
); |
port ( |
clk,rst : in std_logic; |
clk,ena,rst : in std_logic; |
paraminput : in std_logic_vector ((12*width)-1 downto 0); --! Vectores A,B,C,D |
prd32blko : in std_logic_vector ((06*width)-1 downto 0); --! Salidas de los 6 multiplicadores. |
add32blko : in std_logic_vector ((04*width)-1 downto 0); --! Salidas de los 4 sumadores. |
37,7 → 37,7
fifo32x23_q : in std_logic_vector (03*width-1 downto 0); --! Salida de la cola intermedia. |
fifo32x09_q : in std_logic_vector (02*width-1 downto 0); --! Salida de las colas de producto punto. |
unary,crossprod,addsub : in std_logic; --! Bit con el identificador del bloque AB vs CD e identificador del sub bloque (A/B) o (C/D). |
sync_chain_d : in std_logic; --! Señal de dato valido que se va por toda la cadena de sincronizacion. |
scalar : in std_logic; |
sqr32blki,inv32blki : out std_logic_vector (width-1 downto 0); --! Salidas de las 2 raices cuadradas y los 2 inversores. |
fifo32x26_d : out std_logic_vector (03*width-1 downto 0); --! Entrada a la cola intermedia para la normalización. |
fifo32x09_d : out std_logic_vector (02*width-1 downto 0); --! Entrada a las colas intermedias del producto punto. |
80,52 → 80,51
signal sdpfifo_q : vectorblock02; |
signal ssqr32blk,sinv32blk : std_logic_vector(width-1 downto 0); |
|
signal ssync_chain : std_logic_vector(28 downto 0); |
signal ssync_chain_d : std_logic; |
signal sync_chain : std_logic_vector(27 downto 0); |
signal sync_chain_d : std_logic; |
constant rstMasterValue : std_logic := '0'; |
|
begin |
|
--! Cadena de sincronización: 29 posiciones. |
ssync_chain_d <= sync_chain_d; |
--! Cadena de sincronización: 28 posiciones. |
sync_chain_proc: |
process(clk,rst) |
begin |
if rst=rstMasterValue then |
ssync_chain <= (others => '0'); |
sync_chain <= (others => '0'); |
elsif clk'event and clk='1' then |
ssync_chain(0) <= ssync_chain_d; |
for i in 28 downto 1 loop |
ssync_chain(i) <= ssync_chain(i-1); |
sync_chain(0) <= sync_chain_d; |
for i in 27 downto 1 loop |
sync_chain(i) <= sync_chain(i-1); |
end loop; |
end if; |
end process sync_chain_proc; |
--! Escritura en las colas de resultados y escritura/lectura en las colas intermedias mediante cadena de resultados. |
fifo32x09_w <= ssync_chain(4); |
fifo32x23_w <= ssync_chain(0); |
fifo32x09_r <= ssync_chain(12); |
fifo32x23_r <= ssync_chain(23); |
fifo32x09_w <= sync_chain(4); |
fifo32x23_w <= sync_chain(0); |
fifo32x09_r <= sync_chain(); |
fifo32x23_r <= sync_chain(); |
|
res0w <= ssync_chain(22); |
res4w <= ssync_chain(20); |
res0w <= sync_chain(22); |
res4w <= sync_chain(20); |
sync_chain_comb: |
process (ssync_chain,addsub,crossprod,unary) |
process (sync_chain,addsub,crossprod) |
begin |
if unary='1' then |
res567w <= ssync_chain(27); |
res567w <= sync_chain(27); |
else |
res567w <= ssync_chain(3); |
res567w <= sync_chain(3); |
end if; |
|
if addsub='1' then |
res13w <= ssync_chain(8); |
res2w <= ssync_chain(8); |
res13w <= sync_chain(8); |
res2w <= sync_chain(8); |
else |
res13w <= ssync_chain(12); |
res13w <= sync_chain(12); |
if crossprod='1' then |
res2w <= ssync_chain(12); |
res2w <= res13w; |
else |
res2w <= ssync_chain(21); |
res2w <= sync_chain(21); |
end if; |
end if; |
end process sync_chain_comb; |
215,10 → 214,10
ssumando(s7) <= sdpfifo_q(dpfifocd); |
|
|
mul:process(unary,addsub,crossprod,sparaminput,sinv32blk,sprd32blk,sadd32blk,sdpfifo_q,snormfifo_q) |
mul:process(unary,addsub,crossprod,scalar,sparaminput,sinv32blk,sprd32blk,sadd32blk,sdpfifo_q,snormfifo_q) |
begin |
|
sfactor(f4) <= sparaminput(az); |
|
if unary='1' then |
--! Magnitud y normalizacion |
sfactor(f0) <= sparaminput(ax); |
225,62 → 224,47
sfactor(f1) <= sparaminput(ax); |
sfactor(f2) <= sparaminput(ay); |
sfactor(f3) <= sparaminput(ay); |
|
sfactor(f4) <= sparaminput(az); |
sfactor(f5) <= sparaminput(az); |
if crossprod='1' and addsub='1' then |
sfactor(f6) <= sparaminput(cx); |
sfactor(f7) <= sparaminput(dx); |
sfactor(f8) <= sparaminput(cy); |
sfactor(f9) <= sparaminput(dx); |
sfactor(f10) <= sparaminput(cz); |
sfactor(f11) <= sparaminput(dx); |
else |
sfactor(f6) <= snormfifo_q(ax); |
sfactor(f7) <= sinv32blk; |
sfactor(f8) <= snormfifo_q(ay); |
sfactor(f9) <= sinv32blk; |
sfactor(f10) <= snormfifo_q(az); |
sfactor(f11) <= sinv32blk; |
end if; |
|
|
elsif addsub='0' then |
--! Solo productos punto o cruz |
if crossprod='1' then |
|
sfactor(f0) <= sparaminput(ay); |
sfactor(f1) <= sparaminput(bz); |
sfactor(f2) <= sparaminput(az); |
sfactor(f3) <= sparaminput(by); |
|
sfactor(f5) <= sparaminput(bx); |
sfactor(f6) <= sparaminput(ax); |
sfactor(f7) <= sparaminput(bz); |
sfactor(f8) <= sparaminput(ax); |
sfactor(f9) <= sparaminput(by); |
sfactor(f10) <= sparaminput(ay); |
sfactor(f11) <= sparaminput(bx); |
|
else |
|
sfactor(f0) <= sparaminput(ax) ; |
sfactor(f1) <= sparaminput(bx) ; |
sfactor(f2) <= sparaminput(ay) ; |
sfactor(f3) <= sparaminput(by) ; |
sfactor(f5) <= sparaminput(bz) ; |
sfactor(f6) <= sparaminput(cx) ; |
sfactor(f7) <= sparaminput(dx) ; |
sfactor(f8) <= sparaminput(cy) ; |
sfactor(f9) <= sparaminput(dy) ; |
sfactor(f10) <= sparaminput(cz) ; |
sfactor(f11) <= sparaminput(dz) ; |
end if; |
|
sfactor(f6) <= snormfifo_q(ax); |
sfactor(f7) <= sinv32blk; |
sfactor(f8) <= snormfifo_q(ay); |
sfactor(f9) <= sinv32blk; |
sfactor(f10) <= snormfifo_q(az); |
sfactor(f11) <= sinv32blk; |
elsif crossprod='1' then |
--! Solo productos punto |
sfactor(f0) <= sparaminput(ay); |
sfactor(f1) <= sparaminput(bz); |
sfactor(f2) <= sparaminput(az); |
sfactor(f3) <= sparaminput(by); |
sfactor(f4) <= sparaminput(az); |
sfactor(f5) <= sparaminput(bx); |
sfactor(f6) <= sparaminput(ax); |
sfactor(f7) <= sparaminput(bz); |
sfactor(f8) <= sparaminput(ax); |
sfactor(f9) <= sparaminput(by); |
sfactor(f10) <= sparaminput(ay); |
sfactor(f11) <= sparaminput(bx); |
elsif scalar='0' then --! Producto punto |
sfactor(f0) <= sparaminput(ax) ; |
sfactor(f1) <= sparaminput(bx) ; |
sfactor(f2) <= sparaminput(ay) ; |
sfactor(f3) <= sparaminput(by) ; |
sfactor(f4) <= sparaminput(az) ; |
sfactor(f5) <= sparaminput(bz) ; |
sfactor(f6) <= sparaminput(cx) ; |
sfactor(f7) <= sparaminput(dx) ; |
sfactor(f8) <= sparaminput(cy) ; |
sfactor(f9) <= sparaminput(dy) ; |
sfactor(f10) <= sparaminput(cz) ; |
sfactor(f11) <= sparaminput(dz) ; |
else |
sfactor(f0) <= sparaminput(ax) ; |
sfactor(f1) <= sparaminput(bx) ; |
sfactor(f2) <= sparaminput(ay) ; |
sfactor(f3) <= sparaminput(by) ; |
sfactor(f4) <= sparaminput(az) ; |
sfactor(f5) <= sparaminput(bz) ; |
sfactor(f6) <= sparaminput(cx) ; |
sfactor(f7) <= sparaminput(dx) ; |
288,6 → 272,7
sfactor(f9) <= sparaminput(dx) ; |
sfactor(f10) <= sparaminput(cz) ; |
sfactor(f11) <= sparaminput(dx) ; |
|
end if; |
|
|
/sm.vhd
28,77 → 28,62
|
|
entity sm is |
generic ( |
width : integer := 32; |
widthadmemblock : integer := 9 |
--!external_readable_widthad : |
) |
port ( |
|
clk,rst:in std_logic; |
|
adda,addb:out std_logic_vector (widthadmemblock-1 downto 0); |
sync_chain_d:out std_logic; |
|
--! Instruction Q, instruction. |
instrQq:in std_logic_vector(width-1 downto 0); |
|
|
|
--! apempty, arithmetical pipeline empty. |
arithPbusy, instrQempty ,resultQfull: in std_logic; |
|
--! DataPath Control uca code. |
dpc_uca : out std_logic_vector (2 downto 0); |
|
|
add0,add1:out std_logic_vector (8 downto 0); |
iq:in std_logic_vector(31 downto 0); |
read_memory,ird_ack:out std_logic; |
ucsa:out std_logic(3 downto 0); |
iempty , rfull, opq_empty : in std_logic; |
); |
end entity; |
|
architecture sm_arch of sm is |
|
type macState is (FLUSH_TO_NEXT_INSTRUCTION,EXECUTE_INSTRUCTION); |
type macState is (IDLE,EXECUTING,FLUSHING); |
signal state : macState; |
constant rstMasterValue : std_logic:='0'; |
|
component customCounter |
generic ( |
width : integer |
|
); |
port ( |
clk,rst,go,set : in std_logic; |
setValue : in std_Logic_vector(width-1 downto 0); |
count : out std_logic_vector(width-1 downto 0) |
) |
|
signal addt0_blocka,addt0_blockb,set_Value_A,set_Value_B : std_logic_vector(widthadmemblock-1 downto 0); |
signal add_condition_a, add_condition_b,set_a,set_b : std_logic; |
signal s_dpc_uca, s_instrQ_uca : std_logic_vector(2 downto 0); |
signal s_block_start_a, s_block_start_b, s_block_end_a, s_block_end_b : std_logic_vector(4 downto 0); |
|
|
|
|
signal sadd0,sadd1:std_logic_vector (8 downto 0); |
signal schunk0o,schunk0f,schunk1o,schunk1f: std_logic_vector (3 downto 0); |
signal sadd0_now,sadd0_next,sadd0_reg:std_logic_vector(8 downto 0); |
signal sadd1_now,sadd1_next,sadd1_reg:std_logic_vector(8 downto 0); |
signal sadd0_adder_bit,sadd1_adder_bit,sena:std_logic; |
|
|
begin |
|
--! Bloques asignados |
s_block_start_a <= instrQq(width-4 downto width-8); |
s_block_start_b <= instrQq(width-14 downto width-18); |
s_block_end_a <= instrQq(width-9 downto width-13); |
s_block_end_b <= instrQq(width-19 downto width-) |
|
--! Address Counters |
counterA:customCounter |
port map (clk,rst,add_condition_a,set_a,instrQq(width-4 downto width-8)&x"0",addt0_blocka); |
counterB:customCounter |
port map (clk,rst,add_condition_b,set_b,instrQq(width-9 downto width-12)&x"0",addt0_blockb); |
adda <= addt0_blocka; |
addb <= addt0_blockb; |
|
--! uca code |
s_instrQ_uca <= instrQq(31 downto 29); |
schunk0o(3 downto 0) <= iq(19 downto 16); |
schunk0f(3 downto 0) <= iq(15 downto 12); |
schunk1o(3 downto 0) <= iq(11 downto 8); |
schunk1f(3 downto 0) <= iq(7 downto 4); |
|
ucsa <= iq(3 downto 0); |
|
sadd0_next <= sadd0_now+sadd0_adder_bit; |
sadd1_next <= sadd1_now+sadd1_adder_bit; |
|
|
sm_comb: |
process (state) |
begin |
case state is |
when IDLE => |
sadd0_now <= schunk0o(3 downto 0)&x"0"; |
sadd1_now <= schunk1o(3 downto 0)&x"0"; |
when others => |
sadd0_now <= sadd0_next; |
sadd1_now <= sadd1_next; |
end case; |
|
end process; |
|
|
sm_proc: |
process (clk,rst) |
begin |
105,34 → 90,31
if rst=rstMasterValue then |
state <= IDLE; |
ird_ack <= '0'; |
elsif clk='1' and clk'event then |
elsif clk='1' and clk'event and sena='1' then |
|
case state is |
when FLUSH_TO_NEXT_INSTRUCTION => |
|
--! Chequear si hay una instruccion en la salida de la cola de instruccioens. |
if instrQempty='0' then |
when IDLE => |
if rfull='0' and iempty='0' then |
state <= EXECUTING; |
read_memory <= '1'; |
end if; |
when EXCUTING => |
if rfull='0' then |
if sadd1_now=schunk1f&"11111" then |
if sadd0_now=schunk0f&"11111" then |
state <= FLUSHING; |
|
end if; |
end if; |
end if; |
when FLUSHING => |
if opq_empty='1' then |
|
--! Chequear si la cola de resultados tiene espacio. |
if resultQfull='0' then |
|
--! Si el codigo de instruccion (uca) que se encuentra en el DPC es igual al que se encuentra en la instruccion de la salida de la cola de instrucciones, entonces no hay mas validaciones que hacer. |
|
|
--! Now check that arithmetic pipline is not busy |
if arithPbusy='0' then |
|
|
when EXECUTE_INSTRUCTION => |
if addt1_blockb(4 downto 0)=x"1f" and addt1_blocka=x"1f" then |
if addt1_blockb(8 downto ) |
else |
|
end if; |
end case; |
end if; |
|
end process; |
|
nxtadda_proc: |
process () |
|
|
end architecture; |