URL
https://opencores.org/ocsvn/raytrac/raytrac/trunk
Subversion Repositories raytrac
Compare Revisions
- This comparison shows the changes necessary to convert path
/raytrac/branches/fp_sgdma
- from Rev 207 to Rev 206
- ↔ Reverse comparison
Rev 207 → Rev 206
/fadd32long.vhd
0,0 → 1,336
------------------------------------------------ |
--! @file fadd32.vhd |
--! @brief RayTrac Floating Point Adder |
--! @author Julián Andrés Guarín Reyes |
-------------------------------------------------- |
|
|
-- RAYTRAC (FP BRANCH) |
-- Author Julian Andres Guarin |
-- fadd32.vhd |
-- This file is part of raytrac. |
-- |
-- raytrac is free software: you can redistribute it and/or modify |
-- it under the terms of the GNU General Public License as published by |
-- the Free Software Foundation, either version 3 of the License, or |
-- (at your option) any later version. |
-- |
-- raytrac is distributed in the hope that it will be useful, |
-- but WITHOUT ANY WARRANTY; without even the implied warranty of |
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
-- GNU General Public License for more details. |
-- |
-- You should have received a copy of the GNU General Public License |
-- along with raytrac. If not, see <http://www.gnu.org/licenses/> |
library ieee; |
use ieee.std_logic_1164.all; |
use ieee.std_logic_unsigned.all; |
|
use work.arithpack.all; |
|
--! Esta entidad recibe dos números en formato punto flotante IEEE 754, de precision simple y devuelve las mantissas signadas y corridas, y el exponente correspondiente al resultado antes de normalizarlo al formato float. |
--!\nLas 2 mantissas y el exponente entran despues a la entidad add2 que suma las mantissas y entrega el resultado en formato IEEE 754. |
entity fadd32 is |
|
port ( |
clk,dpc : in std_logic; |
a32,b32 : in xfloat32; |
c32 : out xfloat32 |
); |
end entity; |
architecture fadd32_arch of fadd32 is |
|
|
--!TBXSTART:STAGE0 |
signal s0delta : std_logic_vector(7 downto 0); |
signal s0a,s0b : std_logic_vector(31 downto 0); -- Float 32 bit |
|
--!TBXEND |
--!TBXSTART:STAGE1 |
signal s1zero : std_logic; |
signal s1delta : std_logic_vector(5 downto 0); |
signal s1exp : std_logic_vector(7 downto 0); |
signal s1shifter,s1datab_8x : std_logic_vector(8 downto 0); |
signal s1pl,s1datab : std_logic_vector(17 downto 0); |
signal s1umantshift,s1umantfixed,s1postshift,s1xorslab : std_logic_vector(23 downto 0); |
signal s1ph : std_logic_vector(26 downto 0); |
--!TBXEND |
--!TBXSTART:STAGE2 |
signal s2exp : std_logic_vector(7 downto 0); |
signal s2xorslab : std_logic_vector(23 downto 0); |
signal s2umantshift, s2mantfixed : std_logic_vector(24 downto 0); |
--!TBXEND |
--!TBXSTART:STAGE3 |
signal s3exp : std_logic_vector(7 downto 0); |
signal s3mantfixed,s3mantshift : std_logic_vector (24 downto 0); |
--!TBXEND |
--!TBXSTART:STAGE4 |
signal s4exp : std_logic_vector (7 downto 0); |
signal s4xorslab : std_logic_vector (24 downto 0); |
signal s4sresult : std_logic_vector (25 downto 0); |
--!TBXEND |
--!TBXSTART:STAGE5 |
signal s5tokena,s5tokenb,s5tokenc : std_logic; |
signal s5token : std_logic_vector (2 downto 0); |
signal s5exp,s5factor : std_logic_vector (7 downto 0); |
signal s5factorhot9 : std_logic_vector (8 downto 0); |
signal s5factorhot24 : std_logic_vector (23 downto 0); |
signal s5result : std_logic_vector (25 downto 0); |
--!TBXEND |
--!TBXSTART:STAGE6 |
signal s6exp,s6factor : std_logic_vector(7 downto 0); |
signal s6factorhot9,s6datab_4x : std_logic_vector(8 downto 0); |
signal s6pl,s6datab : std_logic_vector(17 downto 0); |
signal s6postshift : std_logic_vector(22 downto 0); |
signal s6result : std_logic_vector(25 downto 0); -- Signed mantissa result |
signal s6ph : std_logic_vector(26 downto 0); |
--!TBXEND |
--!TBXSTART:STAGE7 |
signal s7sign : std_logic; |
signal s7exp,s7factor : std_logic_vector(7 downto 0); |
signal s7postshift : std_logic_vector(22 downto 0); |
--!TBXEND |
|
|
|
|
|
begin |
|
process (clk) |
begin |
if clk'event and clk='1' then |
|
--!Registro de entrada |
s0a <= a32; |
s0b(31) <= dpc xor b32(31); --! Importante: Integrar el signo en el operando B |
s0b(30 downto 0) <= b32(30 downto 0); |
|
--!Etapa 0,Escoger el mayor exponente que sera el resultado desnormalizado, calcula cuanto debe ser el corrimiento de la mantissa con menor exponente y reorganiza los operandos, si el mayor es b, intercambia las posición si el mayor es a las posiciones la mantiene. Zero check. |
--!signo,exponente,mantissa |
if (s0b(30 downto 23)&s0a(30 downto 23))=x"0000" then |
s1zero <= '0'; |
else |
s1zero <= '1'; |
end if; |
s1delta <= s0delta(7) & (s0delta(7) xor s0delta(4))&(s0delta(7) xor s0delta(3)) & s0delta(2 downto 0); |
case s0delta(7) is |
when '1' => |
s1exp <= s0b(30 downto 23); |
s1umantshift <= s0a(31)&s0a(22 downto 0); |
s1umantfixed <= s0b(31)&s0b(22 downto 0); |
when others => |
s1exp <= s0a(30 downto 23); |
s1umantshift <= s0b(31)&s0b(22 downto 0); |
s1umantfixed <= s0a(31)&s0a(22 downto 0); |
end case; |
|
--! Etapa 1: Denormalización de la mantissas. |
case s1delta(4 downto 3) is |
when "00" => s2umantshift <= s1umantshift(23)&s1postshift(23 downto 0); |
when "01" => s2umantshift <= s1umantshift(23)&x"00"&s1postshift(23 downto 8); |
when "10" => s2umantshift <= s1umantshift(23)&x"0000"&s1postshift(23 downto 16); |
when others => s2umantshift <= (others => '0'); |
end case; |
|
s2mantfixed <= s1umantfixed(23) & ( ( ('1'&s1umantfixed(22 downto 0)) xor s1xorslab) + ( x"00000"&"000"&s1umantfixed(23) ) ); |
s2exp <= s1exp; |
|
--! Etapa2: Signar la mantissa denormalizada. |
s3mantfixed <= s2mantfixed; |
s3mantshift <= s2umantshift(24)& ( ( s2umantshift(23 downto 0) xor s2xorslab) + ( x"00000"&"000"&s2umantshift(24) ) ); |
s3exp <= s2exp; |
|
--! Etapa 3: Etapa 3 Realizar la suma, entre la mantissa corrida y la fija. |
s4sresult <= (s3mantshift(24)&s3mantshift)+(s3mantfixed(24)&s3mantfixed); |
s4exp <= s3exp; |
|
--! Etapa 4: Quitar el signo a la mantissa resultante. |
s5result <= s4sresult(25)&((s4sresult(24 downto 0) xor s4xorslab) +(x"000000"&s4sresult(25))); |
s5exp <= s4exp; |
|
|
--! Etapa 5: Codificar el corrimiento para la normalizacion de la mantissa resultante. |
s6result <= s5result; |
s6exp <= s5exp; |
s6factor <= s5factor; |
s6factorhot9 <= s5factorhot9; |
|
--! Etapa 6: Ejecutar el corrimiento de la mantissa. |
s7sign <= s6result(25); |
s7exp <= s6exp; |
s7factor <= not(s6factor)+1; |
s7postshift <= s6postshift; |
|
|
end if; |
end process; |
|
--! Etapa 7: Entregar el resultado. |
c32(31) <= s7sign; |
process(s7exp,s7postshift,s7factor) |
begin |
c32(30 downto 23) <= s7exp+s7factor; |
case s7factor(4 downto 3) is |
when "01" => c32(22 downto 0) <= s7postshift(14 downto 00)&x"00"; |
when "10" => c32(22 downto 0) <= s7postshift(06 downto 00)&x"0000"; |
when others => c32(22 downto 0) <= s7postshift; |
end case; |
end process; |
--! Combinatorial gremlin, Etapa 0 el corrimiento de la mantissa con menor exponente y reorganiza los operandos,\n |
--! si el mayor es b, intercambia las posición si el mayor es a las posiciones la mantiene. |
s0delta <= s0a(30 downto 23)-s0b(30 downto 23); |
--! Combinatorial Gremlin, Etapa 1 Codificar el factor de corrimiento de denormalizacion y denormalizar la mantissa no fija. Signar la mantissa que se queda fija. |
decodeshiftfactor: |
process (s1delta(2 downto 0)) |
begin |
case s1delta(2 downto 0) is |
when "111" => s1shifter(8 downto 0) <= '0'&s1delta(5)&"00000"¬(s1delta(5))&'0'; |
when "110" => s1shifter(8 downto 0) <= "00"&s1delta(5)&"000"¬(s1delta(5))&"00"; |
when "101" => s1shifter(8 downto 0) <= "000"&s1delta(5)&'0'¬(s1delta(5))&"000"; |
when "100" => s1shifter(8 downto 0) <= '0'&x"10"; |
when "011" => s1shifter(8 downto 0) <= "000"¬(s1delta(5))&'0'&s1delta(5)&"000"; |
when "010" => s1shifter(8 downto 0) <= "00"¬(s1delta(5))&"000"&s1delta(5)&"00"; |
when "001" => s1shifter(8 downto 0) <= '0'¬(s1delta(5))&"00000"&s1delta(5)&'0'; |
when others => s1shifter(8 downto 0) <= not(s1delta(5))&"0000000"&s1delta(5); |
end case; |
end process; |
s1datab <= s1zero&s1umantshift(22 downto 06); |
denormhighshiftermult:lpm_mult |
generic map ( |
lpm_hint => "DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9", |
lpm_pipeline => 0, |
lpm_representation => "UNSIGNED", |
lpm_type => "LPM_MULT", |
lpm_widtha => 9, |
lpm_widthb => 18, |
lpm_widthp => 27 |
) |
port map ( |
dataa => s1shifter, |
datab => s1datab, |
result => s1ph |
); |
s1datab_8x <= s1umantshift(5 downto 0)&"000"; |
denormlowshiftermult:lpm_mult |
generic map ( |
lpm_hint => "DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9", |
lpm_pipeline => 0, |
lpm_representation => "UNSIGNED", |
lpm_type => "LPM_MULT", |
lpm_widtha => 9, |
lpm_widthb => 9, |
lpm_widthp => 18 |
) |
port map ( |
dataa => s1shifter, |
datab(8 downto 0) => s1datab_8x, |
result => s1pl |
); |
|
s1postshift(23 downto 7) <= s1ph(25 downto 9); |
s1postshift(06 downto 0) <= s1ph(08 downto 2) or s1pl(17 downto 11); |
s1xorslab(23 downto 0) <= (others => s1umantfixed(23)); |
|
--! Combinatorial Gremlin, Etapa 2: Signar la mantissa denormalizada. |
s2xorslab <= (others => s2umantshift(24)); |
|
--! Combinatorial Gremlin, Etapa 4: Quitar el signo de la mantissa resultante. |
s4xorslab <= (others => s4sresult(25)); |
|
--! Combinatorial Gremlin, Etapa 5: Codificar el factor de normalizacion de la mantissa resultante. |
normalizerdecodeshift: |
process (s5result,s5factorhot24,s5token,s5tokena,s5tokenb,s5tokenc,s5factorhot9) |
begin |
s5tokena <= not(s5result(24)); |
s5tokenb <= not(s5result(24)); |
s5tokenc <= not(s5result(24)); |
s5factor(7 downto 5) <= (others => s5result(24)); |
s5factorhot24 <= x"000000"; |
for i in 23 downto 16 loop |
if s5result(i)='1' then |
s5factorhot24(23-i) <= s5tokena; |
s5tokenb <= '0'; |
s5tokenc <= '0'; |
exit; |
end if; |
end loop; |
for i in 15 downto 8 loop |
if s5result(i)='1' then |
s5factorhot24(23-i) <= s5tokenb; |
s5tokenc <= '0'; |
exit; |
end if; |
end loop; |
for i in 7 downto 0 loop |
if s5result(i)='1' then |
s5factorhot24(23-i) <= s5tokenc; |
exit; |
end if; |
end loop; |
s5token <=s5tokena&s5tokenb&s5tokenc; |
case (s5token) is |
when "100" => s5factor(4 downto 3) <= "00"; |
when "110" => s5factor(4 downto 3) <= "01"; |
when "111" => s5factor(4 downto 3) <= "10"; |
when others => s5factor(4 downto 3) <= (others => s5result(24)); |
end case; |
s5factorhot9 <= (s5factorhot24(7 downto 0)or s5factorhot24(15 downto 8)or s5factorhot24(23 downto 16)) & s5result(24); |
case s5factorhot9 is |
when "100000000" => s5factor(2 downto 0) <= "111"; |
when "010000000" => s5factor(2 downto 0) <= "110"; |
when "001000000" => s5factor(2 downto 0) <= "101"; |
when "000100000" => s5factor(2 downto 0) <= "100"; |
when "000010000" => s5factor(2 downto 0) <= "011"; |
when "000001000" => s5factor(2 downto 0) <= "010"; |
when "000000100" => s5factor(2 downto 0) <= "001"; |
when "000000010" => s5factor(2 downto 0) <= "000"; |
when others => s5factor (2 downto 0) <= (others => s5result(24)); |
end case; |
|
end process; |
|
--! Etapa 6: Ejecutar el corrimiento para normalizar la mantissa. |
s6datab <= s6result(24 downto 7); |
normhighshiftermult:lpm_mult |
generic map ( |
lpm_hint => "DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9", |
lpm_pipeline => 0, |
lpm_representation => "UNSIGNED", |
lpm_type => "LPM_MULT", |
lpm_widtha => 9, |
lpm_widthb => 18, |
lpm_widthp => 27 |
) |
port map ( |
dataa => s6factorhot9, |
datab => s6datab, |
result => s6ph |
); |
s6datab_4x <= s6result(06 downto 0)&"00"; |
normlowshiftermult:lpm_mult |
generic map ( |
lpm_hint => "DEDICATED_MULTIPLIER_CIRCUITRY=YES,MAXIMIZE_SPEED=9", |
lpm_pipeline => 0, |
lpm_representation => "UNSIGNED", |
lpm_type => "LPM_MULT", |
lpm_widtha => 9, |
lpm_widthb => 9, |
lpm_widthp => 18 |
) |
port map ( |
dataa => s6factorhot9, |
datab => s6datab_4x, |
result => s6pl |
); |
s6postshift(22 downto 15) <= s6ph(16 downto 09); |
s6postshift(14 downto 06) <= s6ph(08 downto 00) + s6pl(17 downto 09); |
s6postshift(05 downto 00) <= s6pl(08 downto 03); |
|
|
|
|
|
end architecture; |
|
|