|
//////////////////////////////////////////////////////////////////
|
|
// //
|
|
// Decode stage of Amber 2 Core //
|
|
// //
|
|
// This file is part of the Amber project //
|
|
// http://www.opencores.org/project,amber //
|
|
// //
|
|
// Description //
|
|
// This module is the most complex part of the Amber core //
|
|
// It decodes and sequences all instructions and handles all //
|
|
// interrupts //
|
|
// //
|
|
// Author(s): //
|
|
// - Conor Santifort, csantifort.amber@gmail.com //
|
|
// //
|
|
//////////////////////////////////////////////////////////////////
|
|
// //
|
|
// Copyright (C) 2010 Authors and OPENCORES.ORG //
|
|
// //
|
|
// This source file may be used and distributed without //
|
|
// restriction provided that this copyright statement is not //
|
|
// removed from the file and that any derivative work contains //
|
|
// the original copyright notice and the associated disclaimer. //
|
|
// //
|
|
// This source file is free software; you can redistribute it //
|
|
// and/or modify it under the terms of the GNU Lesser General //
|
|
// Public License as published by the Free Software Foundation; //
|
|
// either version 2.1 of the License, or (at your option) any //
|
|
// later version. //
|
|
// //
|
|
// This source is distributed in the hope that it will be //
|
|
// useful, but WITHOUT ANY WARRANTY; without even the implied //
|
|
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //
|
|
// PURPOSE. See the GNU Lesser General Public License for more //
|
|
// details. //
|
|
// //
|
|
// You should have received a copy of the GNU Lesser General //
|
|
// Public License along with this source; if not, download it //
|
|
// from http://www.opencores.org/lgpl.shtml //
|
|
// //
|
|
//////////////////////////////////////////////////////////////////
|
|
|
|
|
|
module a23_decode
|
|
(
|
|
input i_clk,
|
|
input [31:0] i_read_data,
|
|
input i_fetch_stall, // stall all stages of the cpu at the same time
|
|
input i_irq, // interrupt request
|
|
input i_firq, // Fast interrupt request
|
|
input i_dabt, // data abort interrupt request
|
|
input i_iabt, // instruction pre-fetch abort flag
|
|
input i_adex, // Address Exception
|
|
input [31:0] i_execute_address, // Registered address output by execute stage
|
|
// 2 LSBs of read address used for calculating
|
|
// shift in LDRB ops
|
|
input [7:0] i_abt_status, // Abort status
|
|
input [31:0] i_execute_status_bits, // current status bits values in execute stage
|
|
input i_multiply_done, // multiply unit is nearly done
|
|
|
|
|
|
// --------------------------------------------------
|
|
// Control signals to execute stage
|
|
// --------------------------------------------------
|
|
output reg [31:0] o_read_data = 1'd0,
|
|
output reg [4:0] o_read_data_alignment = 1'd0, // 2 LSBs of read address used for calculating shift in LDRB ops
|
|
|
|
output reg [31:0] o_imm32 = 'd0,
|
|
output reg [4:0] o_imm_shift_amount = 'd0,
|
|
output reg o_shift_imm_zero = 'd0,
|
|
output reg [3:0] o_condition = 4'he, // 4'he = al
|
|
output reg o_exclusive_exec = 'd0, // exclusive access request ( swap instruction )
|
|
output reg o_data_access_exec = 'd0, // high means the memory access is a read
|
|
// read or write, low for instruction
|
|
output reg [1:0] o_status_bits_mode = 2'b11, // SVC
|
|
output reg o_status_bits_irq_mask = 1'd1,
|
|
output reg o_status_bits_firq_mask = 1'd1,
|
|
|
|
output reg [3:0] o_rm_sel = 'd0,
|
|
output reg [3:0] o_rds_sel = 'd0,
|
|
output reg [3:0] o_rn_sel = 'd0,
|
|
output reg [1:0] o_barrel_shift_amount_sel = 'd0,
|
|
output reg [1:0] o_barrel_shift_data_sel = 'd0,
|
|
output reg [1:0] o_barrel_shift_function = 'd0,
|
|
output reg [8:0] o_alu_function = 'd0,
|
|
output reg [1:0] o_multiply_function = 'd0,
|
|
output reg [2:0] o_interrupt_vector_sel = 'd0,
|
|
output reg [3:0] o_address_sel = 4'd2,
|
|
output reg [1:0] o_pc_sel = 2'd2,
|
|
output reg [1:0] o_byte_enable_sel = 'd0, // byte, halfword or word write
|
|
output reg [2:0] o_status_bits_sel = 'd0,
|
|
output reg [2:0] o_reg_write_sel,
|
|
output reg o_user_mode_regs_load,
|
|
output reg o_user_mode_regs_store_nxt,
|
|
output reg o_firq_not_user_mode,
|
|
|
|
output reg o_write_data_wen = 'd0,
|
|
output reg o_base_address_wen = 'd0, // save LDM base address register
|
|
// in case of data abort
|
|
output reg o_pc_wen = 1'd1,
|
|
output reg [14:0] o_reg_bank_wen = 'd0,
|
|
output reg o_status_bits_flags_wen = 'd0,
|
|
output reg o_status_bits_mode_wen = 'd0,
|
|
output reg o_status_bits_irq_mask_wen = 'd0,
|
|
output reg o_status_bits_firq_mask_wen = 'd0,
|
|
|
|
// --------------------------------------------------
|
|
// Co-Processor interface
|
|
// --------------------------------------------------
|
|
output reg [2:0] o_copro_opcode1 = 'd0,
|
|
output reg [2:0] o_copro_opcode2 = 'd0,
|
|
output reg [3:0] o_copro_crn = 'd0,
|
|
output reg [3:0] o_copro_crm = 'd0,
|
|
output reg [3:0] o_copro_num = 'd0,
|
|
output reg [1:0] o_copro_operation = 'd0, // 0 = no operation,
|
|
// 1 = Move to Amber Core Register from Coprocessor
|
|
// 2 = Move to Coprocessor from Amber Core Register
|
|
output reg o_copro_write_data_wen = 'd0,
|
|
output o_iabt_trigger,
|
|
output [31:0] o_iabt_address,
|
|
output [7:0] o_iabt_status,
|
|
output o_dabt_trigger,
|
|
output [31:0] o_dabt_address,
|
|
output [7:0] o_dabt_status
|
|
|
|
|
|
);
|
|
|
|
`include "a23_localparams.v"
|
|
`include "a23_functions.v"
|
|
|
|
localparam [4:0] RST_WAIT1 = 5'd0,
|
|
RST_WAIT2 = 5'd1,
|
|
INT_WAIT1 = 5'd2,
|
|
INT_WAIT2 = 5'd3,
|
|
EXECUTE = 5'd4,
|
|
PRE_FETCH_EXEC = 5'd5, // Execute the Pre-Fetched Instruction
|
|
MEM_WAIT1 = 5'd6, // conditionally decode current instruction, in case
|
|
// previous instruction does not execute in S2
|
|
MEM_WAIT2 = 5'd7,
|
|
PC_STALL1 = 5'd8, // Program Counter altered
|
|
// conditionally decude current instruction, in case
|
|
// previous instruction does not execute in S2
|
|
PC_STALL2 = 5'd9,
|
|
MTRANS_EXEC1 = 5'd10,
|
|
MTRANS_EXEC2 = 5'd11,
|
|
MTRANS_EXEC3 = 5'd12,
|
|
MTRANS_EXEC3B = 5'd13,
|
|
MTRANS_EXEC4 = 5'd14,
|
|
MTRANS5_ABORT = 5'd15,
|
|
MULT_PROC1 = 5'd16, // first cycle, save pre fetch instruction
|
|
MULT_PROC2 = 5'd17, // do multiplication
|
|
MULT_STORE = 5'd19, // save RdLo
|
|
MULT_ACCUMU = 5'd20, // Accumulate add lower 32 bits
|
|
SWAP_WRITE = 5'd22,
|
|
SWAP_WAIT1 = 5'd23,
|
|
SWAP_WAIT2 = 5'd24,
|
|
COPRO_WAIT = 5'd25;
|
|
|
|
|
|
// ========================================================
|
|
// Internal signals
|
|
// ========================================================
|
|
wire [31:0] instruction;
|
|
wire instruction_iabt; // abort flag, follows the instruction
|
|
wire instruction_adex; // address exception flag, follows the instruction
|
|
wire [31:0] instruction_address; // instruction virtual address, follows
|
|
// the instruction
|
|
wire [7:0] instruction_iabt_status; // abort status, follows the instruction
|
|
wire [1:0] instruction_sel;
|
|
reg [3:0] type;
|
|
wire [3:0] opcode;
|
|
wire [7:0] imm8;
|
|
wire [31:0] offset12;
|
|
wire [31:0] offset24;
|
|
wire [4:0] shift_imm;
|
|
|
|
wire opcode_compare;
|
|
wire mem_op;
|
|
wire load_op;
|
|
wire store_op;
|
|
wire write_pc;
|
|
wire immediate_shifter_operand;
|
|
wire rds_use_rs;
|
|
wire branch;
|
|
wire mem_op_pre_indexed;
|
|
wire mem_op_post_indexed;
|
|
|
|
// Flop inputs
|
|
wire [31:0] imm32_nxt;
|
|
wire [4:0] imm_shift_amount_nxt;
|
|
wire shift_imm_zero_nxt;
|
|
wire [3:0] condition_nxt;
|
|
reg exclusive_exec_nxt;
|
|
reg data_access_exec_nxt;
|
|
|
|
reg [1:0] barrel_shift_function_nxt;
|
|
wire [8:0] alu_function_nxt;
|
|
reg [1:0] multiply_function_nxt;
|
|
reg [1:0] status_bits_mode_nxt;
|
|
reg status_bits_irq_mask_nxt;
|
|
reg status_bits_firq_mask_nxt;
|
|
|
|
wire [3:0] rm_sel_nxt;
|
|
wire [3:0] rds_sel_nxt;
|
|
wire [3:0] rn_sel_nxt;
|
|
reg [1:0] barrel_shift_amount_sel_nxt;
|
|
reg [1:0] barrel_shift_data_sel_nxt;
|
|
reg [3:0] address_sel_nxt;
|
|
reg [1:0] pc_sel_nxt;
|
|
reg [1:0] byte_enable_sel_nxt;
|
|
reg [2:0] status_bits_sel_nxt;
|
|
reg [2:0] reg_write_sel_nxt;
|
|
reg user_mode_regs_load_nxt;
|
|
wire firq_not_user_mode_nxt;
|
|
|
|
// ALU Function signals
|
|
reg alu_swap_sel_nxt;
|
|
reg alu_not_sel_nxt;
|
|
reg [1:0] alu_cin_sel_nxt;
|
|
reg alu_cout_sel_nxt;
|
|
reg [3:0] alu_out_sel_nxt;
|
|
|
|
reg write_data_wen_nxt;
|
|
reg copro_write_data_wen_nxt;
|
|
reg base_address_wen_nxt;
|
|
reg pc_wen_nxt;
|
|
reg [14:0] reg_bank_wen_nxt;
|
|
reg status_bits_flags_wen_nxt;
|
|
reg status_bits_mode_wen_nxt;
|
|
reg status_bits_irq_mask_wen_nxt;
|
|
reg status_bits_firq_mask_wen_nxt;
|
|
|
|
reg saved_current_instruction_wen; // saved load instruction
|
|
reg pre_fetch_instruction_wen; // pre-fetch instruction
|
|
|
|
reg [4:0] control_state = RST_WAIT1;
|
|
reg [4:0] control_state_nxt;
|
|
|
|
|
|
wire dabt;
|
|
reg dabt_reg = 'd0;
|
|
reg dabt_reg_d1;
|
|
reg iabt_reg = 'd0;
|
|
reg adex_reg = 'd0;
|
|
reg [31:0] abt_address_reg = 'd0;
|
|
reg [7:0] abt_status_reg = 'd0;
|
|
reg [31:0] saved_current_instruction = 'd0;
|
|
reg saved_current_instruction_iabt = 'd0; // access abort flag
|
|
reg saved_current_instruction_adex = 'd0; // address exception
|
|
reg [31:0] saved_current_instruction_address = 'd0; // virtual address of abort instruction
|
|
reg [7:0] saved_current_instruction_iabt_status = 'd0; // status of abort instruction
|
|
reg [31:0] pre_fetch_instruction = 'd0;
|
|
reg pre_fetch_instruction_iabt = 'd0; // access abort flag
|
|
reg pre_fetch_instruction_adex = 'd0; // address exception
|
|
reg [31:0] pre_fetch_instruction_address = 'd0; // virtual address of abort instruction
|
|
reg [7:0] pre_fetch_instruction_iabt_status = 'd0; // status of abort instruction
|
|
|
|
wire instruction_valid;
|
|
wire instruction_execute;
|
|
|
|
reg [3:0] mtrans_reg; // the current register being accessed as part of STM/LDM
|
|
reg [3:0] mtrans_reg_d1 = 'd0; // delayed by 1 period
|
|
reg [3:0] mtrans_reg_d2 = 'd0; // delayed by 2 periods
|
|
reg [31:0] mtrans_instruction_nxt;
|
|
|
|
wire [31:0] mtrans_base_reg_change;
|
|
wire [4:0] mtrans_num_registers;
|
|
wire use_saved_current_instruction;
|
|
wire use_pre_fetch_instruction;
|
|
wire interrupt;
|
|
wire [1:0] interrupt_mode;
|
|
wire [2:0] next_interrupt;
|
|
reg irq = 'd0;
|
|
reg firq = 'd0;
|
|
wire firq_request;
|
|
wire irq_request;
|
|
wire swi_request;
|
|
wire und_request;
|
|
wire dabt_request;
|
|
reg [1:0] copro_operation_nxt;
|
|
reg mtrans_r15 = 'd0;
|
|
reg mtrans_r15_nxt;
|
|
reg restore_base_address = 'd0;
|
|
reg restore_base_address_nxt;
|
|
|
|
wire regop_set_flags;
|
|
|
|
|
|
// ========================================================
|
|
// Instruction Abort and Data Abort outputs
|
|
// ========================================================
|
|
|
|
assign o_iabt_trigger = instruction_iabt && o_status_bits_mode == SVC && control_state == INT_WAIT1;
|
|
assign o_iabt_address = instruction_address;
|
|
assign o_iabt_status = instruction_iabt_status;
|
|
|
|
assign o_dabt_trigger = dabt_reg && !dabt_reg_d1;
|
|
assign o_dabt_address = abt_address_reg;
|
|
assign o_dabt_status = abt_status_reg;
|
|
|
|
|
|
// ========================================================
|
|
// Instruction Decode
|
|
// ========================================================
|
|
|
|
// for instructions that take more than one cycle
|
|
// the instruction is saved in the 'saved_mem_instruction'
|
|
// register and then that register is used for the rest of
|
|
// the execution of the instruction.
|
|
// But if the instruction does not execute because of the
|
|
// condition, then need to select the next instruction to
|
|
// decode
|
|
assign use_saved_current_instruction = instruction_execute &&
|
|
( control_state == MEM_WAIT1 ||
|
|
control_state == MEM_WAIT2 ||
|
|
control_state == MTRANS_EXEC1 ||
|
|
control_state == MTRANS_EXEC2 ||
|
|
control_state == MTRANS_EXEC3 ||
|
|
control_state == MTRANS_EXEC3B ||
|
|
control_state == MTRANS_EXEC4 ||
|
|
control_state == MTRANS5_ABORT ||
|
|
control_state == MULT_PROC1 ||
|
|
control_state == MULT_PROC2 ||
|
|
control_state == MULT_ACCUMU ||
|
|
control_state == MULT_STORE ||
|
|
control_state == INT_WAIT1 ||
|
|
control_state == INT_WAIT2 ||
|
|
control_state == SWAP_WRITE ||
|
|
control_state == SWAP_WAIT1 ||
|
|
control_state == SWAP_WAIT2 ||
|
|
control_state == COPRO_WAIT );
|
|
|
|
assign use_pre_fetch_instruction = control_state == PRE_FETCH_EXEC;
|
|
|
|
|
|
assign instruction_sel = use_saved_current_instruction ? 2'd1 : // saved_current_instruction
|
|
use_pre_fetch_instruction ? 2'd2 : // pre_fetch_instruction
|
|
2'd0 ; // o_read_data
|
|
|
|
assign instruction = instruction_sel == 2'd0 ? o_read_data :
|
|
instruction_sel == 2'd1 ? saved_current_instruction :
|
|
pre_fetch_instruction ;
|
|
|
|
// abort flag
|
|
assign instruction_iabt = instruction_sel == 2'd0 ? iabt_reg :
|
|
instruction_sel == 2'd1 ? saved_current_instruction_iabt :
|
|
pre_fetch_instruction_iabt ;
|
|
|
|
assign instruction_address = instruction_sel == 2'd0 ? abt_address_reg :
|
|
instruction_sel == 2'd1 ? saved_current_instruction_address :
|
|
pre_fetch_instruction_address ;
|
|
|
|
assign instruction_iabt_status = instruction_sel == 2'd0 ? abt_status_reg :
|
|
instruction_sel == 2'd1 ? saved_current_instruction_iabt_status :
|
|
pre_fetch_instruction_iabt_status ;
|
|
|
|
// instruction address exception
|
|
assign instruction_adex = instruction_sel == 2'd0 ? adex_reg :
|
|
instruction_sel == 2'd1 ? saved_current_instruction_adex :
|
|
pre_fetch_instruction_adex ;
|
|
|
|
// Instruction Decode - Order is important!
|
|
always @*
|
|
casez ({instruction[27:20], instruction[7:4]})
|
|
12'b00010?001001 : type = SWAP;
|
|
12'b000000??1001 : type = MULT;
|
|
12'b00?????????? : type = REGOP;
|
|
12'b01?????????? : type = TRANS;
|
|
12'b100????????? : type = MTRANS;
|
|
12'b101????????? : type = BRANCH;
|
|
12'b110????????? : type = CODTRANS;
|
|
12'b1110???????0 : type = COREGOP;
|
|
12'b1110???????1 : type = CORTRANS;
|
|
default: type = SWI;
|
|
endcase
|
|
|
|
|
|
// ========================================================
|
|
// Fixed fields within the instruction
|
|
// ========================================================
|
|
|
|
assign opcode = instruction[24:21];
|
|
assign condition_nxt = instruction[31:28];
|
|
|
|
assign rm_sel_nxt = instruction[3:0];
|
|
|
|
assign rn_sel_nxt = branch ? 4'd15 : // Use PC to calculate branch destination
|
|
instruction[19:16] ;
|
|
|
|
assign rds_sel_nxt = control_state == SWAP_WRITE ? instruction[3:0] : // Rm gets written out to memory
|
|
type == MTRANS ? mtrans_reg :
|
|
branch ? 4'd15 : // Update the PC
|
|
rds_use_rs ? instruction[11:8] :
|
|
instruction[15:12] ;
|
|
|
|
|
|
assign shift_imm = instruction[11:7];
|
|
assign offset12 = { 20'h0, instruction[11:0]};
|
|
assign offset24 = {{6{instruction[23]}}, instruction[23:0], 2'd0 }; // sign extend
|
|
assign imm8 = instruction[7:0];
|
|
|
|
assign immediate_shifter_operand = instruction[25];
|
|
assign rds_use_rs = (type == REGOP && !instruction[25] && instruction[4]) ||
|
|
(type == MULT &&
|
|
(control_state == MULT_PROC1 ||
|
|
control_state == MULT_PROC2 ||
|
|
instruction_valid && !interrupt )) ;
|
|
assign branch = type == BRANCH;
|
|
assign opcode_compare =
|
|
opcode == CMP ||
|
|
opcode == CMN ||
|
|
opcode == TEQ ||
|
|
opcode == TST ;
|
|
|
|
|
|
assign mem_op = type == TRANS;
|
|
assign load_op = mem_op && instruction[20];
|
|
assign store_op = mem_op && !instruction[20];
|
|
assign write_pc = pc_wen_nxt && pc_sel_nxt != 2'd0;
|
|
assign regop_set_flags = type == REGOP && instruction[20];
|
|
|
|
assign mem_op_pre_indexed = instruction[24] && instruction[21];
|
|
assign mem_op_post_indexed = !instruction[24];
|
|
|
|
assign imm32_nxt = // add 0 to Rm
|
|
type == MULT ? { 32'd0 } :
|
|
|
|
// 4 x number of registers
|
|
type == MTRANS ? { mtrans_base_reg_change } :
|
|
type == BRANCH ? { offset24 } :
|
|
type == TRANS ? { offset12 } :
|
|
instruction[11:8] == 4'h0 ? { 24'h0, imm8[7:0] } :
|
|
instruction[11:8] == 4'h1 ? { imm8[1:0], 24'h0, imm8[7:2] } :
|
|
instruction[11:8] == 4'h2 ? { imm8[3:0], 24'h0, imm8[7:4] } :
|
|
instruction[11:8] == 4'h3 ? { imm8[5:0], 24'h0, imm8[7:6] } :
|
|
instruction[11:8] == 4'h4 ? { imm8[7:0], 24'h0 } :
|
|
instruction[11:8] == 4'h5 ? { 2'h0, imm8[7:0], 22'h0 } :
|
|
instruction[11:8] == 4'h6 ? { 4'h0, imm8[7:0], 20'h0 } :
|
|
instruction[11:8] == 4'h7 ? { 6'h0, imm8[7:0], 18'h0 } :
|
|
instruction[11:8] == 4'h8 ? { 8'h0, imm8[7:0], 16'h0 } :
|
|
instruction[11:8] == 4'h9 ? { 10'h0, imm8[7:0], 14'h0 } :
|
|
instruction[11:8] == 4'ha ? { 12'h0, imm8[7:0], 12'h0 } :
|
|
instruction[11:8] == 4'hb ? { 14'h0, imm8[7:0], 10'h0 } :
|
|
instruction[11:8] == 4'hc ? { 16'h0, imm8[7:0], 8'h0 } :
|
|
instruction[11:8] == 4'hd ? { 18'h0, imm8[7:0], 6'h0 } :
|
|
instruction[11:8] == 4'he ? { 20'h0, imm8[7:0], 4'h0 } :
|
|
{ 22'h0, imm8[7:0], 2'h0 } ;
|
|
|
|
|
|
assign imm_shift_amount_nxt = shift_imm ;
|
|
|
|
// This signal is encoded in the decode stage because
|
|
// it is on the critical path in the execute stage
|
|
assign shift_imm_zero_nxt = imm_shift_amount_nxt == 5'd0 && // immediate amount = 0
|
|
barrel_shift_amount_sel_nxt == 2'd2; // shift immediate amount
|
|
|
|
assign alu_function_nxt = { alu_swap_sel_nxt,
|
|
alu_not_sel_nxt,
|
|
alu_cin_sel_nxt,
|
|
alu_cout_sel_nxt,
|
|
alu_out_sel_nxt };
|
|
|
|
|
|
// ========================================================
|
|
// MTRANS Operations
|
|
// ========================================================
|
|
|
|
// Bit 15 = r15
|
|
// Bit 0 = R0
|
|
// In LDM and STM instructions R0 is loaded or stored first
|
|
always @*
|
|
casez (instruction[15:0])
|
|
16'b???????????????1 : mtrans_reg = 4'h0 ;
|
|
16'b??????????????10 : mtrans_reg = 4'h1 ;
|
|
16'b?????????????100 : mtrans_reg = 4'h2 ;
|
|
16'b????????????1000 : mtrans_reg = 4'h3 ;
|
|
16'b???????????10000 : mtrans_reg = 4'h4 ;
|
|
16'b??????????100000 : mtrans_reg = 4'h5 ;
|
|
16'b?????????1000000 : mtrans_reg = 4'h6 ;
|
|
16'b????????10000000 : mtrans_reg = 4'h7 ;
|
|
16'b???????100000000 : mtrans_reg = 4'h8 ;
|
|
16'b??????1000000000 : mtrans_reg = 4'h9 ;
|
|
16'b?????10000000000 : mtrans_reg = 4'ha ;
|
|
16'b????100000000000 : mtrans_reg = 4'hb ;
|
|
16'b???1000000000000 : mtrans_reg = 4'hc ;
|
|
16'b??10000000000000 : mtrans_reg = 4'hd ;
|
|
16'b?100000000000000 : mtrans_reg = 4'he ;
|
|
default : mtrans_reg = 4'hf ;
|
|
endcase
|
|
|
|
always @*
|
|
casez (instruction[15:0])
|
|
16'b???????????????1 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 1], 1'd0};
|
|
16'b??????????????10 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 2], 2'd0};
|
|
16'b?????????????100 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 3], 3'd0};
|
|
16'b????????????1000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 4], 4'd0};
|
|
16'b???????????10000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 5], 5'd0};
|
|
16'b??????????100000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 6], 6'd0};
|
|
16'b?????????1000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 7], 7'd0};
|
|
16'b????????10000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 8], 8'd0};
|
|
16'b???????100000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15: 9], 9'd0};
|
|
16'b??????1000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:10], 10'd0};
|
|
16'b?????10000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:11], 11'd0};
|
|
16'b????100000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:12], 12'd0};
|
|
16'b???1000000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:13], 13'd0};
|
|
16'b??10000000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15:14], 14'd0};
|
|
16'b?100000000000000 : mtrans_instruction_nxt = {instruction[31:16], instruction[15 ], 15'd0};
|
|
default : mtrans_instruction_nxt = {instruction[31:16], 16'd0};
|
|
endcase
|
|
|
|
|
|
// number of registers to be stored
|
|
assign mtrans_num_registers = {4'd0, instruction[15]} +
|
|
{4'd0, instruction[14]} +
|
|
{4'd0, instruction[13]} +
|
|
{4'd0, instruction[12]} +
|
|
{4'd0, instruction[11]} +
|
|
{4'd0, instruction[10]} +
|
|
{4'd0, instruction[ 9]} +
|
|
{4'd0, instruction[ 8]} +
|
|
{4'd0, instruction[ 7]} +
|
|
{4'd0, instruction[ 6]} +
|
|
{4'd0, instruction[ 5]} +
|
|
{4'd0, instruction[ 4]} +
|
|
{4'd0, instruction[ 3]} +
|
|
{4'd0, instruction[ 2]} +
|
|
{4'd0, instruction[ 1]} +
|
|
{4'd0, instruction[ 0]} ;
|
|
|
|
// 4 x number of registers to be stored
|
|
assign mtrans_base_reg_change = {25'd0, mtrans_num_registers, 2'd0};
|
|
|
|
// ========================================================
|
|
// Interrupts
|
|
// ========================================================
|
|
|
|
assign firq_request = firq && !i_execute_status_bits[26];
|
|
assign irq_request = irq && !i_execute_status_bits[27];
|
|
assign swi_request = type == SWI;
|
|
assign dabt_request = dabt_reg;
|
|
|
|
// copro15 and copro13 only supports reg trans opcodes
|
|
// all other opcodes involving co-processors cause an
|
|
// undefined instrution interrupt
|
|
assign und_request = type == CODTRANS ||
|
|
type == COREGOP ||
|
|
( type == CORTRANS && instruction[11:8] != 4'd15 );
|
|
|
|
|
|
// in order of priority !!
|
|
// Highest
|
|
// 1 Reset
|
|
// 2 Data Abort (including data TLB miss)
|
|
// 3 FIRQ
|
|
// 4 IRQ
|
|
// 5 Prefetch Abort (including prefetch TLB miss)
|
|
// 6 Undefined instruction, SWI
|
|
// Lowest
|
|
assign next_interrupt = dabt_request ? 3'd1 : // Data Abort
|
|
firq_request ? 3'd2 : // FIRQ
|
|
irq_request ? 3'd3 : // IRQ
|
|
instruction_adex ? 3'd4 : // Address Exception
|
|
instruction_iabt ? 3'd5 : // PreFetch Abort, only triggered
|
|
// if the instruction is used
|
|
und_request ? 3'd6 : // Undefined Instruction
|
|
swi_request ? 3'd7 : // SWI
|
|
3'd0 ; // none
|
|
|
|
// SWI and undefined instructions do not cause an interrupt in the decode
|
|
// stage. They only trigger interrupts if they arfe executed, so the
|
|
// interrupt is triggered if the execute condition is met in the execute stage
|
|
assign interrupt = next_interrupt != 3'd0 &&
|
|
next_interrupt != 3'd7 && // SWI
|
|
next_interrupt != 3'd6 ; // undefined interrupt
|
|
|
|
|
|
assign interrupt_mode = next_interrupt == 3'd2 ? FIRQ :
|
|
next_interrupt == 3'd3 ? IRQ :
|
|
next_interrupt == 3'd4 ? SVC :
|
|
next_interrupt == 3'd5 ? SVC :
|
|
next_interrupt == 3'd6 ? SVC :
|
|
next_interrupt == 3'd7 ? SVC :
|
|
next_interrupt == 3'd1 ? SVC :
|
|
USR ;
|
|
|
|
|
|
|
|
|
|
// ========================================================
|
|
// Generate control signals
|
|
// ========================================================
|
|
always @*
|
|
begin
|
|
// default mode
|
|
status_bits_mode_nxt = i_execute_status_bits[1:0]; // change to mode in execute stage get reflected
|
|
// back to this stage automatically
|
|
status_bits_irq_mask_nxt = o_status_bits_irq_mask;
|
|
status_bits_firq_mask_nxt = o_status_bits_firq_mask;
|
|
exclusive_exec_nxt = 1'd0;
|
|
data_access_exec_nxt = 1'd0;
|
|
copro_operation_nxt = 'd0;
|
|
|
|
// Save an instruction to use later
|
|
saved_current_instruction_wen = 1'd0;
|
|
pre_fetch_instruction_wen = 1'd0;
|
|
mtrans_r15_nxt = mtrans_r15;
|
|
restore_base_address_nxt = restore_base_address;
|
|
|
|
// default Mux Select values
|
|
barrel_shift_amount_sel_nxt = 'd0; // don't shift the input
|
|
barrel_shift_data_sel_nxt = 'd0; // immediate value
|
|
barrel_shift_function_nxt = 'd0;
|
|
multiply_function_nxt = 'd0;
|
|
address_sel_nxt = 'd0;
|
|
pc_sel_nxt = 'd0;
|
|
byte_enable_sel_nxt = 'd0;
|
|
status_bits_sel_nxt = 'd0;
|
|
reg_write_sel_nxt = 'd0;
|
|
user_mode_regs_load_nxt = 'd0;
|
|
o_user_mode_regs_store_nxt = 'd0;
|
|
|
|
// ALU Muxes
|
|
alu_swap_sel_nxt = 'd0;
|
|
alu_not_sel_nxt = 'd0;
|
|
alu_cin_sel_nxt = 'd0;
|
|
alu_cout_sel_nxt = 'd0;
|
|
alu_out_sel_nxt = 'd0;
|
|
|
|
// default Flop Write Enable values
|
|
write_data_wen_nxt = 'd0;
|
|
copro_write_data_wen_nxt = 'd0;
|
|
base_address_wen_nxt = 'd0;
|
|
pc_wen_nxt = 'd1;
|
|
reg_bank_wen_nxt = 'd0; // Don't select any
|
|
status_bits_flags_wen_nxt = 'd0;
|
|
status_bits_mode_wen_nxt = 'd0;
|
|
status_bits_irq_mask_wen_nxt = 'd0;
|
|
status_bits_firq_mask_wen_nxt = 'd0;
|
|
|
|
if ( instruction_valid && !interrupt )
|
|
begin
|
|
if ( type == REGOP )
|
|
begin
|
|
if ( !opcode_compare )
|
|
begin
|
|
// Check is the load destination is the PC
|
|
if (instruction[15:12] == 4'd15)
|
|
begin
|
|
pc_sel_nxt = 2'd1; // alu_out
|
|
address_sel_nxt = 4'd1; // alu_out
|
|
end
|
|
else
|
|
reg_bank_wen_nxt = decode (instruction[15:12]);
|
|
end
|
|
|
|
if ( !immediate_shifter_operand )
|
|
barrel_shift_function_nxt = instruction[6:5];
|
|
|
|
if ( !immediate_shifter_operand )
|
|
barrel_shift_data_sel_nxt = 2'd2; // Shift value from Rm register
|
|
|
|
if ( !immediate_shifter_operand && instruction[4] )
|
|
barrel_shift_amount_sel_nxt = 2'd1; // Shift amount from Rs registter
|
|
|
|
if ( !immediate_shifter_operand && !instruction[4] )
|
|
barrel_shift_amount_sel_nxt = 2'd2; // Shift immediate amount
|
|
|
|
if ( opcode == ADD || opcode == CMN ) // CMN is just like an ADD
|
|
begin
|
|
alu_out_sel_nxt = 4'd1; // Add
|
|
end
|
|
|
|
if ( opcode == ADC ) // Add with Carry
|
|
begin
|
|
alu_out_sel_nxt = 4'd1; // Add
|
|
alu_cin_sel_nxt = 2'd2; // carry in from status_bits
|
|
end
|
|
|
|
if ( opcode == SUB || opcode == CMP ) // Subtract
|
|
begin
|
|
alu_out_sel_nxt = 4'd1; // Add
|
|
alu_cin_sel_nxt = 2'd1; // cin = 1
|
|
alu_not_sel_nxt = 1'd1; // invert B
|
|
end
|
|
|
|
// SBC (Subtract with Carry) subtracts the value of its
|
|
// second operand and the value of NOT(Carry flag) from
|
|
// the value of its first operand.
|
|
// Rd = Rn - shifter_operand - NOT(C Flag)
|
|
if ( opcode == SBC ) // Subtract with Carry
|
|
begin
|
|
alu_out_sel_nxt = 4'd1; // Add
|
|
alu_cin_sel_nxt = 2'd2; // carry in from status_bits
|
|
alu_not_sel_nxt = 1'd1; // invert B
|
|
end
|
|
|
|
if ( opcode == RSB ) // Reverse Subtract
|
|
begin
|
|
alu_out_sel_nxt = 4'd1; // Add
|
|
alu_cin_sel_nxt = 2'd1; // cin = 1
|
|
alu_not_sel_nxt = 1'd1; // invert B
|
|
alu_swap_sel_nxt = 1'd1; // swap A and B
|
|
end
|
|
|
|
if ( opcode == RSC ) // Reverse Subtract with carry
|
|
begin
|
|
alu_out_sel_nxt = 4'd1; // Add
|
|
alu_cin_sel_nxt = 2'd2; // carry in from status_bits
|
|
alu_not_sel_nxt = 1'd1; // invert B
|
|
alu_swap_sel_nxt = 1'd1; // swap A and B
|
|
end
|
|
|
|
if ( opcode == AND || opcode == TST ) // Logical AND, Test (using AND operator)
|
|
begin
|
|
alu_out_sel_nxt = 4'd8; // AND
|
|
alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry
|
|
end
|
|
|
|
if ( opcode == EOR || opcode == TEQ ) // Logical Exclusive OR, Test Equivalence (using EOR operator)
|
|
begin
|
|
alu_out_sel_nxt = 4'd6; // XOR
|
|
alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry
|
|
end
|
|
|
|
if ( opcode == ORR )
|
|
begin
|
|
alu_out_sel_nxt = 4'd7; // OR
|
|
alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry
|
|
end
|
|
|
|
if ( opcode == BIC ) // Bit Clear (using AND & NOT operators)
|
|
begin
|
|
alu_out_sel_nxt = 4'd8; // AND
|
|
alu_not_sel_nxt = 1'd1; // invert B
|
|
alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry
|
|
end
|
|
|
|
if ( opcode == MOV ) // Move
|
|
begin
|
|
alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry
|
|
end
|
|
|
|
if ( opcode == MVN ) // Move NOT
|
|
begin
|
|
alu_not_sel_nxt = 1'd1; // invert B
|
|
alu_cout_sel_nxt = 1'd1; // i_barrel_shift_carry
|
|
end
|
|
end
|
|
|
|
// Load & Store instructions
|
|
if ( mem_op )
|
|
begin
|
|
saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
data_access_exec_nxt = 1'd1; // indicate that its a data read or write,
|
|
// rather than an instruction fetch
|
|
alu_out_sel_nxt = 4'd1; // Add
|
|
|
|
if ( !instruction[23] ) // U: Subtract offset
|
|
begin
|
|
alu_cin_sel_nxt = 2'd1; // cin = 1
|
|
alu_not_sel_nxt = 1'd1; // invert B
|
|
end
|
|
|
|
if ( store_op )
|
|
begin
|
|
write_data_wen_nxt = 1'd1;
|
|
if ( type == TRANS && instruction[22] )
|
|
byte_enable_sel_nxt = 2'd1; // Save byte
|
|
end
|
|
|
|
// need to update the register holding the address ?
|
|
// This is Rn bits [19:16]
|
|
if ( mem_op_pre_indexed || mem_op_post_indexed )
|
|
begin
|
|
// Check is the load destination is the PC
|
|
if ( rn_sel_nxt == 4'd15 )
|
|
pc_sel_nxt = 2'd1;
|
|
else
|
|
reg_bank_wen_nxt = decode ( rn_sel_nxt );
|
|
end
|
|
|
|
// if post-indexed, then use Rn rather than ALU output, as address
|
|
if ( mem_op_post_indexed )
|
|
address_sel_nxt = 4'd4; // Rn
|
|
else
|
|
address_sel_nxt = 4'd1; // alu out
|
|
|
|
if ( instruction[25] && type == TRANS )
|
|
barrel_shift_data_sel_nxt = 2'd2; // Shift value from Rm register
|
|
|
|
if ( type == TRANS && instruction[25] && shift_imm != 5'd0 )
|
|
begin
|
|
barrel_shift_function_nxt = instruction[6:5];
|
|
barrel_shift_amount_sel_nxt = 2'd2; // imm_shift_amount
|
|
end
|
|
end
|
|
|
|
if ( type == BRANCH )
|
|
begin
|
|
pc_sel_nxt = 2'd1; // alu_out
|
|
address_sel_nxt = 4'd1; // alu_out
|
|
alu_out_sel_nxt = 4'd1; // Add
|
|
|
|
if ( instruction[24] ) // Link
|
|
begin
|
|
reg_bank_wen_nxt = decode (4'd14); // Save PC to LR
|
|
reg_write_sel_nxt = 3'd1; // pc - 32'd4
|
|
end
|
|
end
|
|
|
|
if ( type == MTRANS )
|
|
begin
|
|
saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
data_access_exec_nxt = 1'd1; // indicate that its a data read or write,
|
|
// rather than an instruction fetch
|
|
alu_out_sel_nxt = 4'd1; // Add
|
|
mtrans_r15_nxt = instruction[15]; // load or save r15 ?
|
|
base_address_wen_nxt = 1'd1; // Save the value of the register used for the base address,
|
|
// in case of a data abort, and need to restore the value
|
|
|
|
// The spec says -
|
|
// If the instruction would have overwritten the base with data
|
|
// (that is, it has the base in the transfer list), the overwriting is prevented.
|
|
// This is true even when the abort occurs after the base word gets loaded
|
|
restore_base_address_nxt = instruction[20] &&
|
|
(instruction[15:0] & (1'd1 << instruction[19:16]));
|
|
|
|
// Increment or Decrement
|
|
if ( instruction[23] ) // increment
|
|
begin
|
|
if ( instruction[24] ) // increment before
|
|
address_sel_nxt = 4'd7; // Rn + 4
|
|
else
|
|
address_sel_nxt = 4'd4; // Rn
|
|
end
|
|
else // decrement
|
|
begin
|
|
alu_cin_sel_nxt = 2'd1; // cin = 1
|
|
alu_not_sel_nxt = 1'd1; // invert B
|
|
if ( !instruction[24] ) // decrement after
|
|
address_sel_nxt = 4'd6; // alu out + 4
|
|
else
|
|
address_sel_nxt = 4'd1; // alu out
|
|
end
|
|
|
|
// Load or store ?
|
|
if ( !instruction[20] ) // Store
|
|
write_data_wen_nxt = 1'd1;
|
|
|
|
// LDM: load into user mode registers, when in priviledged mode
|
|
// DOnt use mtrans_r15 here because its not loaded yet
|
|
if ( {instruction[22:20],instruction[15]} == 4'b1010 )
|
|
user_mode_regs_load_nxt = 1'd1;
|
|
|
|
// SDM: store the user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20]} == 3'b100 )
|
|
o_user_mode_regs_store_nxt = 1'd1;
|
|
|
|
// update the base register ?
|
|
if ( instruction[21] ) // the W bit
|
|
reg_bank_wen_nxt = decode (rn_sel_nxt);
|
|
end
|
|
|
|
|
|
if ( type == MULT )
|
|
begin
|
|
multiply_function_nxt[0] = 1'd1; // set enable
|
|
// some bits can be changed just below
|
|
saved_current_instruction_wen = 1'd1; // Save the Multiply instruction to
|
|
// refer back to later
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
|
|
if ( instruction[21] )
|
|
multiply_function_nxt[1] = 1'd1; // accumulate
|
|
end
|
|
|
|
|
|
// swp - do read part first
|
|
if ( type == SWAP )
|
|
begin
|
|
saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
data_access_exec_nxt = 1'd1; // indicate that its a data read or write,
|
|
// rather than an instruction fetch
|
|
barrel_shift_data_sel_nxt = 2'd2; // Shift value from Rm register
|
|
address_sel_nxt = 4'd4; // Rn
|
|
exclusive_exec_nxt = 1'd1; // signal an exclusive access
|
|
end
|
|
|
|
|
|
// mcr & mrc - takes two cycles
|
|
if ( type == CORTRANS && !und_request )
|
|
begin
|
|
saved_current_instruction_wen = 1'd1; // Save the memory access instruction to refer back to later
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
address_sel_nxt = 4'd3; // pc (not pc + 4)
|
|
|
|
if ( instruction[20] ) // MRC
|
|
copro_operation_nxt = 2'd1; // Register transfer from Co-Processor
|
|
else // MCR
|
|
begin
|
|
// Don't enable operation to Co-Processor until next period
|
|
// So it gets the Rd value from the execution stage at the same time
|
|
copro_operation_nxt = 2'd0;
|
|
copro_write_data_wen_nxt = 1'd1; // Rd register value to co-processor
|
|
end
|
|
end
|
|
|
|
|
|
if ( type == SWI || und_request )
|
|
begin
|
|
// save address of next instruction to Supervisor Mode LR
|
|
reg_write_sel_nxt = 3'd1; // pc -4
|
|
reg_bank_wen_nxt = decode (4'd14); // LR
|
|
|
|
address_sel_nxt = 4'd2; // interrupt_vector
|
|
pc_sel_nxt = 2'd2; // interrupt_vector
|
|
|
|
status_bits_mode_nxt = interrupt_mode; // e.g. Supervisor mode
|
|
status_bits_mode_wen_nxt = 1'd1;
|
|
|
|
// disable normal interrupts
|
|
status_bits_irq_mask_nxt = 1'd1;
|
|
status_bits_irq_mask_wen_nxt = 1'd1;
|
|
end
|
|
|
|
|
|
if ( regop_set_flags )
|
|
begin
|
|
status_bits_flags_wen_nxt = 1'd1;
|
|
|
|
// If <Rd> is r15, the ALU output is copied to the Status Bits.
|
|
// Not allowed to use r15 for mul or lma instructions
|
|
if ( instruction[15:12] == 4'd15 )
|
|
begin
|
|
status_bits_sel_nxt = 3'd1; // alu out
|
|
|
|
// Priviledged mode? Then also update the other status bits
|
|
if ( i_execute_status_bits[1:0] != USR )
|
|
begin
|
|
status_bits_mode_wen_nxt = 1'd1;
|
|
status_bits_irq_mask_wen_nxt = 1'd1;
|
|
status_bits_firq_mask_wen_nxt = 1'd1;
|
|
end
|
|
end
|
|
end
|
|
|
|
end
|
|
|
|
// Handle asynchronous interrupts.
|
|
// interrupts are processed only during execution states
|
|
// multicycle instructions must complete before the interrupt starts
|
|
// SWI, Address Exception and Undefined Instruction interrupts are only executed if the
|
|
// instruction that causes the interrupt is conditionally executed so
|
|
// its not handled here
|
|
if ( instruction_valid && interrupt && next_interrupt != 3'd6 )
|
|
begin
|
|
// Save the interrupt causing instruction to refer back to later
|
|
// This also saves the instruction abort vma and status, in the case of an
|
|
// instruction abort interrupt
|
|
saved_current_instruction_wen = 1'd1;
|
|
|
|
// save address of next instruction to Supervisor Mode LR
|
|
// Address Exception ?
|
|
if ( next_interrupt == 3'd4 )
|
|
reg_write_sel_nxt = 3'd7; // pc
|
|
else
|
|
reg_write_sel_nxt = 3'd1; // pc -4
|
|
|
|
reg_bank_wen_nxt = decode (4'd14); // LR
|
|
|
|
address_sel_nxt = 4'd2; // interrupt_vector
|
|
pc_sel_nxt = 2'd2; // interrupt_vector
|
|
|
|
status_bits_mode_nxt = interrupt_mode; // e.g. Supervisor mode
|
|
status_bits_mode_wen_nxt = 1'd1;
|
|
|
|
// disable normal interrupts
|
|
status_bits_irq_mask_nxt = 1'd1;
|
|
status_bits_irq_mask_wen_nxt = 1'd1;
|
|
|
|
// disable fast interrupts
|
|
if ( next_interrupt == 3'd2 ) // FIRQ
|
|
begin
|
|
status_bits_firq_mask_nxt = 1'd1;
|
|
status_bits_firq_mask_wen_nxt = 1'd1;
|
|
end
|
|
end
|
|
|
|
|
|
// previous instruction was either ldr or sdr
|
|
// if it is currently executing in the execute stage do the following
|
|
if ( control_state == MEM_WAIT1 )
|
|
begin
|
|
// Save the next instruction to execute later
|
|
// Do this even if this instruction does not execute because of Condition
|
|
pre_fetch_instruction_wen = 1'd1;
|
|
|
|
if ( instruction_execute ) // conditional execution state
|
|
begin
|
|
address_sel_nxt = 4'd3; // pc (not pc + 4)
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
end
|
|
end
|
|
|
|
|
|
// completion of load operation
|
|
if ( control_state == MEM_WAIT2 && load_op )
|
|
begin
|
|
barrel_shift_data_sel_nxt = 2'd1; // load word from memory
|
|
barrel_shift_amount_sel_nxt = 2'd3; // shift by address[1:0] x 8
|
|
|
|
// shift needed
|
|
if ( i_execute_address[1:0] != 2'd0 )
|
|
barrel_shift_function_nxt = ROR;
|
|
|
|
// load a byte
|
|
if ( type == TRANS && instruction[22] )
|
|
alu_out_sel_nxt = 4'd3; // zero_extend8
|
|
|
|
if ( !dabt ) // dont load data there is an abort on the data read
|
|
begin
|
|
// Check if the load destination is the PC
|
|
if (instruction[15:12] == 4'd15)
|
|
begin
|
|
pc_sel_nxt = 2'd1; // alu_out
|
|
address_sel_nxt = 4'd1; // alu_out
|
|
end
|
|
else
|
|
reg_bank_wen_nxt = decode (instruction[15:12]);
|
|
end
|
|
end
|
|
|
|
|
|
// second cycle of multiple load or store
|
|
if ( control_state == MTRANS_EXEC1 )
|
|
begin
|
|
// Save the next instruction to execute later
|
|
// Do this even if this instruction does not execute because of Condition
|
|
pre_fetch_instruction_wen = 1'd1;
|
|
|
|
if ( instruction_execute ) // conditional execution state
|
|
begin
|
|
address_sel_nxt = 4'd5; // o_address
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
data_access_exec_nxt = 1'd1; // indicate that its a data read or write,
|
|
// rather than an instruction fetch
|
|
|
|
if ( !instruction[20] ) // Store
|
|
write_data_wen_nxt = 1'd1;
|
|
|
|
// LDM: load into user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20],mtrans_r15} == 4'b1010 )
|
|
user_mode_regs_load_nxt = 1'd1;
|
|
|
|
// SDM: store the user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20]} == 3'b100 )
|
|
o_user_mode_regs_store_nxt = 1'd1;
|
|
end
|
|
end
|
|
|
|
|
|
// third cycle of multiple load or store
|
|
if ( control_state == MTRANS_EXEC2 )
|
|
begin
|
|
address_sel_nxt = 4'd5; // o_address
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
data_access_exec_nxt = 1'd1; // indicate that its a data read or write,
|
|
// rather than an instruction fetch
|
|
barrel_shift_data_sel_nxt = 2'd1; // load word from memory
|
|
|
|
// Load or Store
|
|
if ( instruction[20] ) // Load
|
|
begin
|
|
// Can never be loading the PC in this state, as the PC is always
|
|
// the last register in the set to be loaded
|
|
if ( !dabt )
|
|
reg_bank_wen_nxt = decode (mtrans_reg_d2);
|
|
end
|
|
else // Store
|
|
write_data_wen_nxt = 1'd1;
|
|
|
|
// LDM: load into user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20],mtrans_r15} == 4'b1010 )
|
|
user_mode_regs_load_nxt = 1'd1;
|
|
|
|
// SDM: store the user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20]} == 3'b100 )
|
|
o_user_mode_regs_store_nxt = 1'd1;
|
|
end
|
|
|
|
|
|
// second or fourth cycle of multiple load or store
|
|
if ( control_state == MTRANS_EXEC3 && instruction_execute )
|
|
begin
|
|
address_sel_nxt = 4'd3; // pc (not pc + 4)
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
barrel_shift_data_sel_nxt = 2'd1; // load word from memory
|
|
|
|
// Can never be loading the PC in this state, as the PC is always
|
|
// the last register in the set to be loaded
|
|
if ( instruction[20] && !dabt ) // Load
|
|
reg_bank_wen_nxt = decode (mtrans_reg_d2);
|
|
|
|
// LDM: load into user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20],mtrans_r15} == 4'b1010 )
|
|
user_mode_regs_load_nxt = 1'd1;
|
|
|
|
// SDM: store the user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20]} == 3'b100 )
|
|
o_user_mode_regs_store_nxt = 1'd1;
|
|
end
|
|
|
|
// state is used for LMD/STM of a single register
|
|
if ( control_state == MTRANS_EXEC3B && instruction_execute )
|
|
begin
|
|
// Save the next instruction to execute later
|
|
// Do this even if this instruction does not execute because of Condition
|
|
pre_fetch_instruction_wen = 1'd1;
|
|
|
|
address_sel_nxt = 4'd3; // pc (not pc + 4)
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
|
|
// LDM: load into user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20],mtrans_r15} == 4'b1010 )
|
|
user_mode_regs_load_nxt = 1'd1;
|
|
|
|
// SDM: store the user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20]} == 3'b100 )
|
|
o_user_mode_regs_store_nxt = 1'd1;
|
|
end
|
|
|
|
if ( control_state == MTRANS_EXEC4 )
|
|
begin
|
|
barrel_shift_data_sel_nxt = 2'd1; // load word from memory
|
|
|
|
if ( instruction[20] ) // Load
|
|
begin
|
|
if (!dabt) // dont overwrite registers or status if theres a data abort
|
|
begin
|
|
if ( mtrans_reg_d2 == 4'd15 ) // load new value into PC
|
|
begin
|
|
address_sel_nxt = 4'd1; // alu_out - read instructions using new PC value
|
|
pc_sel_nxt = 2'd1; // alu_out
|
|
pc_wen_nxt = 1'd1; // write PC
|
|
|
|
// ldm with S bit and pc: the Status bits are updated
|
|
// Node this must be done only at the end
|
|
// so the register set is the set in the mode before it
|
|
// gets changed.
|
|
if ( instruction[22] )
|
|
begin
|
|
status_bits_sel_nxt = 3'd1; // alu out
|
|
status_bits_flags_wen_nxt = 1'd1;
|
|
|
|
// Can't change the mode or mask bits in User mode
|
|
if ( i_execute_status_bits[1:0] != USR )
|
|
begin
|
|
status_bits_mode_wen_nxt = 1'd1;
|
|
status_bits_irq_mask_wen_nxt = 1'd1;
|
|
status_bits_firq_mask_wen_nxt = 1'd1;
|
|
end
|
|
end
|
|
end
|
|
else
|
|
begin
|
|
reg_bank_wen_nxt = decode (mtrans_reg_d2);
|
|
end
|
|
end
|
|
end
|
|
|
|
// we have a data abort interrupt
|
|
if ( dabt )
|
|
begin
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
end
|
|
|
|
// LDM: load into user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20],mtrans_r15} == 4'b1010 )
|
|
user_mode_regs_load_nxt = 1'd1;
|
|
|
|
// SDM: store the user mode registers, when in priviledged mode
|
|
if ( {instruction[22:20]} == 3'b100 )
|
|
o_user_mode_regs_store_nxt = 1'd1;
|
|
end
|
|
|
|
|
|
// state is for when a data abort interrupt is triggered during an LDM
|
|
if ( control_state == MTRANS5_ABORT )
|
|
begin
|
|
// Restore the Base Address, if the base register is included in the
|
|
// list of registers being loaded
|
|
if (restore_base_address) // LDM with base address in register list
|
|
begin
|
|
reg_write_sel_nxt = 3'd6; // write base_register
|
|
reg_bank_wen_nxt = decode ( instruction[19:16] ); // to Rn
|
|
end
|
|
end
|
|
|
|
|
|
// Multiply or Multiply-Accumulate
|
|
if ( control_state == MULT_PROC1 && instruction_execute )
|
|
begin
|
|
// Save the next instruction to execute later
|
|
// Do this even if this instruction does not execute because of Condition
|
|
pre_fetch_instruction_wen = 1'd1;
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
multiply_function_nxt = o_multiply_function;
|
|
end
|
|
|
|
|
|
// Multiply or Multiply-Accumulate
|
|
// Do multiplication
|
|
// Wait for done or accumulate signal
|
|
if ( control_state == MULT_PROC2 )
|
|
begin
|
|
// Save the next instruction to execute later
|
|
// Do this even if this instruction does not execute because of Condition
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
address_sel_nxt = 4'd3; // pc (not pc + 4)
|
|
multiply_function_nxt = o_multiply_function;
|
|
end
|
|
|
|
|
|
// Save RdLo
|
|
// always last cycle of all multiply or multiply accumulate operations
|
|
if ( control_state == MULT_STORE )
|
|
begin
|
|
reg_write_sel_nxt = 3'd2; // multiply_out
|
|
multiply_function_nxt = o_multiply_function;
|
|
|
|
if ( type == MULT ) // 32-bit
|
|
reg_bank_wen_nxt = decode (instruction[19:16]); // Rd
|
|
else // 64-bit / Long
|
|
reg_bank_wen_nxt = decode (instruction[15:12]); // RdLo
|
|
|
|
if ( instruction[20] ) // the 'S' bit
|
|
begin
|
|
status_bits_sel_nxt = 3'd4; // { multiply_flags, status_bits_flags[1:0] }
|
|
status_bits_flags_wen_nxt = 1'd1;
|
|
end
|
|
end
|
|
|
|
// Add lower 32 bits to multiplication product
|
|
if ( control_state == MULT_ACCUMU )
|
|
begin
|
|
multiply_function_nxt = o_multiply_function;
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
address_sel_nxt = 4'd3; // pc (not pc + 4)
|
|
end
|
|
|
|
// swp - do write request in 2nd cycle
|
|
if ( control_state == SWAP_WRITE && instruction_execute )
|
|
begin
|
|
barrel_shift_data_sel_nxt = 2'd2; // Shift value from Rm register
|
|
address_sel_nxt = 4'd4; // Rn
|
|
write_data_wen_nxt = 1'd1;
|
|
data_access_exec_nxt = 1'd1; // indicate that its a data read or write,
|
|
// rather than an instruction fetch
|
|
|
|
if ( instruction[22] )
|
|
byte_enable_sel_nxt = 2'd1; // Save byte
|
|
|
|
if ( instruction_execute ) // conditional execution state
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
|
|
// Save the next instruction to execute later
|
|
// Do this even if this instruction does not execute because of Condition
|
|
pre_fetch_instruction_wen = 1'd1;
|
|
|
|
end
|
|
|
|
|
|
// swp - receive read response in 3rd cycle
|
|
if ( control_state == SWAP_WAIT1 )
|
|
begin
|
|
barrel_shift_data_sel_nxt = 2'd1; // load word from memory
|
|
barrel_shift_amount_sel_nxt = 2'd3; // shift by address[1:0] x 8
|
|
|
|
// shift needed
|
|
if ( i_execute_address[1:0] != 2'd0 )
|
|
barrel_shift_function_nxt = ROR;
|
|
|
|
if ( instruction_execute ) // conditional execution state
|
|
begin
|
|
address_sel_nxt = 4'd3; // pc (not pc + 4)
|
|
pc_wen_nxt = 1'd0; // hold current PC value
|
|
end
|
|
|
|
// load a byte
|
|
if ( instruction[22] )
|
|
alu_out_sel_nxt = 4'd3; // zero_extend8
|
|
|
|
if ( !dabt )
|
|
begin
|
|
// Check is the load destination is the PC
|
|
if ( instruction[15:12] == 4'd15 )
|
|
begin
|
|
pc_sel_nxt = 2'd1; // alu_out
|
|
address_sel_nxt = 4'd1; // alu_out
|
|
end
|
|
else
|
|
reg_bank_wen_nxt = decode (instruction[15:12]);
|
|
end
|
|
end
|
|
|
|
// 1 cycle delay for Co-Processor Register access
|
|
if ( control_state == COPRO_WAIT && instruction_execute )
|
|
begin
|
|
pre_fetch_instruction_wen = 1'd1;
|
|
|
|
if ( instruction[20] ) // mrc instruction
|
|
begin
|
|
// Check is the load destination is the PC
|
|
if ( instruction[15:12] == 4'd15 )
|
|
begin
|
|
// If r15 is specified for <Rd>, the condition code flags are
|
|
// updated instead of a general-purpose register.
|
|
status_bits_sel_nxt = 3'd3; // i_copro_data
|
|
status_bits_flags_wen_nxt = 1'd1;
|
|
|
|
// Can't change these in USR mode
|
|
if ( i_execute_status_bits[1:0] != USR )
|
|
begin
|
|
status_bits_mode_wen_nxt = 1'd1;
|
|
status_bits_irq_mask_wen_nxt = 1'd1;
|
|
status_bits_firq_mask_wen_nxt = 1'd1;
|
|
end
|
|
end
|
|
else
|
|
reg_bank_wen_nxt = decode (instruction[15:12]);
|
|
|
|
reg_write_sel_nxt = 3'd5; // i_copro_data
|
|
end
|
|
else // mcr instruction
|
|
begin
|
|
copro_operation_nxt = 2'd2; // Register transfer to Co-Processor
|
|
end
|
|
end
|
|
|
|
|
|
// Have just changed the status_bits mode but this
|
|
// creates a 1 cycle gap with the old mode
|
|
// coming back from execute into instruction_decode
|
|
// So squash that old mode value during this
|
|
// cycle of the interrupt transition
|
|
if ( control_state == INT_WAIT1 )
|
|
status_bits_mode_nxt = o_status_bits_mode; // Supervisor mode
|
|
|
|
end
|
|
|
|
|
|
// Speed up the long path from u_decode/o_read_data to u_register_bank/r8_firq
|
|
// This pre-encodes the firq_s3 signal thats used in u_register_bank
|
|
assign firq_not_user_mode_nxt = !user_mode_regs_load_nxt && status_bits_mode_nxt == FIRQ;
|
|
|
|
|
|
// ========================================================
|
|
// Next State Logic
|
|
// ========================================================
|
|
|
|
// this replicates the current value of the execute signal in the execute stage
|
|
assign instruction_execute = conditional_execute ( o_condition, i_execute_status_bits[31:28] );
|
|
|
|
assign instruction_valid = (control_state == EXECUTE || control_state == PRE_FETCH_EXEC) ||
|
|
// when last instruction was multi-cycle instruction but did not execute
|
|
// because condition was false then act like you're in the execute state
|
|
(!instruction_execute && (control_state == PC_STALL1 ||
|
|
control_state == MEM_WAIT1 ||
|
|
control_state == COPRO_WAIT ||
|
|
control_state == SWAP_WRITE ||
|
|
control_state == MULT_PROC1 ||
|
|
control_state == MTRANS_EXEC1 ||
|
|
control_state == MTRANS_EXEC3 ||
|
|
control_state == MTRANS_EXEC3B ) );
|
|
|
|
|
|
always @*
|
|
begin
|
|
// default is to hold the current state
|
|
control_state_nxt = control_state;
|
|
|
|
// Note: The order is important here
|
|
if ( control_state == RST_WAIT1 ) control_state_nxt = RST_WAIT2;
|
|
if ( control_state == RST_WAIT2 ) control_state_nxt = EXECUTE;
|
|
if ( control_state == INT_WAIT1 ) control_state_nxt = INT_WAIT2;
|
|
if ( control_state == INT_WAIT2 ) control_state_nxt = EXECUTE;
|
|
if ( control_state == COPRO_WAIT ) control_state_nxt = PRE_FETCH_EXEC;
|
|
if ( control_state == PC_STALL1 ) control_state_nxt = PC_STALL2;
|
|
if ( control_state == PC_STALL2 ) control_state_nxt = EXECUTE;
|
|
if ( control_state == SWAP_WRITE ) control_state_nxt = SWAP_WAIT1;
|
|
if ( control_state == SWAP_WAIT1 ) control_state_nxt = SWAP_WAIT2;
|
|
if ( control_state == MULT_STORE ) control_state_nxt = PRE_FETCH_EXEC;
|
|
if ( control_state == MTRANS5_ABORT ) control_state_nxt = PRE_FETCH_EXEC;
|
|
|
|
if ( control_state == MEM_WAIT1 )
|
|
control_state_nxt = MEM_WAIT2;
|
|
|
|
if ( control_state == MEM_WAIT2 ||
|
|
control_state == SWAP_WAIT2 )
|
|
begin
|
|
if ( write_pc ) // writing to the PC!!
|
|
control_state_nxt = PC_STALL1;
|
|
else
|
|
control_state_nxt = PRE_FETCH_EXEC;
|
|
end
|
|
|
|
if ( control_state == MTRANS_EXEC1 )
|
|
begin
|
|
if (mtrans_instruction_nxt[15:0] != 16'd0)
|
|
control_state_nxt = MTRANS_EXEC2;
|
|
else // if the register list holds a single register
|
|
control_state_nxt = MTRANS_EXEC3;
|
|
end
|
|
|
|
// Stay in State MTRANS_EXEC2 until the full list of registers to
|
|
// load or store has been processed
|
|
if ( control_state == MTRANS_EXEC2 && mtrans_num_registers == 5'd1 )
|
|
control_state_nxt = MTRANS_EXEC3;
|
|
|
|
if ( control_state == MTRANS_EXEC3 ) control_state_nxt = MTRANS_EXEC4;
|
|
|
|
if ( control_state == MTRANS_EXEC3B ) control_state_nxt = MTRANS_EXEC4;
|
|
|
|
if ( control_state == MTRANS_EXEC4 )
|
|
begin
|
|
if ( dabt ) // data abort
|
|
control_state_nxt = MTRANS5_ABORT;
|
|
else if (write_pc) // writing to the PC!!
|
|
control_state_nxt = PC_STALL1;
|
|
else
|
|
control_state_nxt = PRE_FETCH_EXEC;
|
|
end
|
|
|
|
if ( control_state == MULT_PROC1 )
|
|
begin
|
|
if (!instruction_execute)
|
|
control_state_nxt = PRE_FETCH_EXEC;
|
|
else
|
|
control_state_nxt = MULT_PROC2;
|
|
end
|
|
|
|
if ( control_state == MULT_PROC2 )
|
|
begin
|
|
if ( i_multiply_done )
|
|
if ( o_multiply_function[1] ) // Accumulate ?
|
|
control_state_nxt = MULT_ACCUMU;
|
|
else
|
|
control_state_nxt = MULT_STORE;
|
|
end
|
|
|
|
|
|
if ( control_state == MULT_ACCUMU )
|
|
begin
|
|
control_state_nxt = MULT_STORE;
|
|
end
|
|
|
|
|
|
// This should come at the end, so that conditional execution works
|
|
// correctly
|
|
if ( instruction_valid )
|
|
begin
|
|
// default is to stay in execute state, or to move into this
|
|
// state from a conditional execute state
|
|
control_state_nxt = EXECUTE;
|
|
|
|
if ( mem_op ) // load or store word or byte
|
|
control_state_nxt = MEM_WAIT1;
|
|
if ( write_pc )
|
|
control_state_nxt = PC_STALL1;
|
|
if ( type == MTRANS )
|
|
begin
|
|
if ( mtrans_num_registers != 5'd0 )
|
|
begin
|
|
// check for LDM/STM of a single register
|
|
if ( mtrans_num_registers == 5'd1 )
|
|
control_state_nxt = MTRANS_EXEC3B;
|
|
else
|
|
control_state_nxt = MTRANS_EXEC1;
|
|
end
|
|
else
|
|
control_state_nxt = MTRANS_EXEC3;
|
|
end
|
|
|
|
if ( type == MULT )
|
|
control_state_nxt = MULT_PROC1;
|
|
|
|
if ( type == SWAP )
|
|
control_state_nxt = SWAP_WRITE;
|
|
|
|
if ( type == CORTRANS && !und_request )
|
|
control_state_nxt = COPRO_WAIT;
|
|
|
|
// interrupt overrides everything else so its last
|
|
if ( interrupt )
|
|
control_state_nxt = INT_WAIT1;
|
|
end
|
|
end
|
|
|
|
|
|
// ========================================================
|
|
// Register Update
|
|
// ========================================================
|
|
always @ ( posedge i_clk )
|
|
if (!i_fetch_stall)
|
|
begin
|
|
o_read_data <= i_read_data;
|
|
o_read_data_alignment <= {i_execute_address[1:0], 3'd0};
|
|
abt_address_reg <= i_execute_address;
|
|
iabt_reg <= i_iabt;
|
|
adex_reg <= i_adex;
|
|
abt_status_reg <= i_abt_status;
|
|
o_status_bits_mode <= status_bits_mode_nxt;
|
|
o_status_bits_irq_mask <= status_bits_irq_mask_nxt;
|
|
o_status_bits_firq_mask <= status_bits_firq_mask_nxt;
|
|
o_imm32 <= imm32_nxt;
|
|
o_imm_shift_amount <= imm_shift_amount_nxt;
|
|
o_shift_imm_zero <= shift_imm_zero_nxt;
|
|
|
|
// when have an interrupt, execute the interrupt operation
|
|
// unconditionally in the execute stage
|
|
// ensures that status_bits register gets updated correctly
|
|
// Likewise when in middle of multi-cycle instructions
|
|
// execute them unconditionally
|
|
o_condition <= instruction_valid && !interrupt ? condition_nxt : AL;
|
|
o_exclusive_exec <= exclusive_exec_nxt;
|
|
o_data_access_exec <= data_access_exec_nxt;
|
|
|
|
o_rm_sel <= rm_sel_nxt;
|
|
o_rds_sel <= rds_sel_nxt;
|
|
o_rn_sel <= rn_sel_nxt;
|
|
o_barrel_shift_amount_sel <= barrel_shift_amount_sel_nxt;
|
|
o_barrel_shift_data_sel <= barrel_shift_data_sel_nxt;
|
|
o_barrel_shift_function <= barrel_shift_function_nxt;
|
|
o_alu_function <= alu_function_nxt;
|
|
o_multiply_function <= multiply_function_nxt;
|
|
o_interrupt_vector_sel <= next_interrupt;
|
|
o_address_sel <= address_sel_nxt;
|
|
o_pc_sel <= pc_sel_nxt;
|
|
o_byte_enable_sel <= byte_enable_sel_nxt;
|
|
o_status_bits_sel <= status_bits_sel_nxt;
|
|
o_reg_write_sel <= reg_write_sel_nxt;
|
|
o_user_mode_regs_load <= user_mode_regs_load_nxt;
|
|
o_firq_not_user_mode <= firq_not_user_mode_nxt;
|
|
o_write_data_wen <= write_data_wen_nxt;
|
|
o_base_address_wen <= base_address_wen_nxt;
|
|
o_pc_wen <= pc_wen_nxt;
|
|
o_reg_bank_wen <= reg_bank_wen_nxt;
|
|
o_status_bits_flags_wen <= status_bits_flags_wen_nxt;
|
|
o_status_bits_mode_wen <= status_bits_mode_wen_nxt;
|
|
o_status_bits_irq_mask_wen <= status_bits_irq_mask_wen_nxt;
|
|
o_status_bits_firq_mask_wen <= status_bits_firq_mask_wen_nxt;
|
|
|
|
o_copro_opcode1 <= instruction[23:21];
|
|
o_copro_opcode2 <= instruction[7:5];
|
|
o_copro_crn <= instruction[19:16];
|
|
o_copro_crm <= instruction[3:0];
|
|
o_copro_num <= instruction[11:8];
|
|
o_copro_operation <= copro_operation_nxt;
|
|
o_copro_write_data_wen <= copro_write_data_wen_nxt;
|
|
mtrans_r15 <= mtrans_r15_nxt;
|
|
restore_base_address <= restore_base_address_nxt;
|
|
control_state <= control_state_nxt;
|
|
mtrans_reg_d1 <= mtrans_reg;
|
|
mtrans_reg_d2 <= mtrans_reg_d1;
|
|
end
|
|
|
|
|
|
|
|
always @ ( posedge i_clk )
|
|
if ( !i_fetch_stall )
|
|
begin
|
|
// sometimes this is a pre-fetch instruction
|
|
// e.g. two ldr instructions in a row. The second ldr will be saved
|
|
// to the pre-fetch instruction register
|
|
// then when its decoded, a copy is saved to the saved_current_instruction
|
|
// register
|
|
if (type == MTRANS)
|
|
begin
|
|
saved_current_instruction <= mtrans_instruction_nxt;
|
|
saved_current_instruction_iabt <= instruction_iabt;
|
|
saved_current_instruction_adex <= instruction_adex;
|
|
saved_current_instruction_address <= instruction_address;
|
|
saved_current_instruction_iabt_status <= instruction_iabt_status;
|
|
end
|
|
else if (saved_current_instruction_wen)
|
|
begin
|
|
saved_current_instruction <= instruction;
|
|
saved_current_instruction_iabt <= instruction_iabt;
|
|
saved_current_instruction_adex <= instruction_adex;
|
|
saved_current_instruction_address <= instruction_address;
|
|
saved_current_instruction_iabt_status <= instruction_iabt_status;
|
|
end
|
|
|
|
if (pre_fetch_instruction_wen)
|
|
begin
|
|
pre_fetch_instruction <= o_read_data;
|
|
pre_fetch_instruction_iabt <= iabt_reg;
|
|
pre_fetch_instruction_adex <= adex_reg;
|
|
pre_fetch_instruction_address <= abt_address_reg;
|
|
pre_fetch_instruction_iabt_status <= abt_status_reg;
|
|
end
|
|
end
|
|
|
|
|
|
|
|
always @ ( posedge i_clk )
|
|
if ( !i_fetch_stall )
|
|
begin
|
|
irq <= i_irq;
|
|
firq <= i_firq;
|
|
|
|
if ( control_state == INT_WAIT1 && o_status_bits_mode == SVC )
|
|
begin
|
|
dabt_reg <= 1'd0;
|
|
end
|
|
else
|
|
begin
|
|
dabt_reg <= dabt_reg || i_dabt;
|
|
end
|
|
|
|
dabt_reg_d1 <= dabt_reg;
|
|
end
|
|
|
|
assign dabt = dabt_reg || i_dabt;
|
|
|
|
|
|
// ========================================================
|
|
// Decompiler for debugging core - not synthesizable
|
|
// ========================================================
|
|
//synopsys translate_off
|
|
|
|
`include "debug_functions.v"
|
|
|
|
a23_decompile u_decompile (
|
|
.i_clk ( i_clk ),
|
|
.i_fetch_stall ( i_fetch_stall ),
|
|
.i_instruction ( instruction ),
|
|
.i_instruction_valid ( instruction_valid ),
|
|
.i_instruction_execute ( instruction_execute ),
|
|
.i_instruction_address ( instruction_address ),
|
|
.i_interrupt ( {3{interrupt}} & next_interrupt ),
|
|
.i_interrupt_state ( control_state == INT_WAIT2 ),
|
|
.i_instruction_undefined ( und_request ),
|
|
.i_pc_sel ( o_pc_sel ),
|
|
.i_pc_wen ( o_pc_wen )
|
|
);
|
|
|
|
|
|
wire [(15*8)-1:0] xCONTROL_STATE;
|
|
wire [(15*8)-1:0] xMODE;
|
|
|
|
assign xCONTROL_STATE =
|
|
control_state == RST_WAIT1 ? "RST_WAIT1" :
|
|
control_state == RST_WAIT2 ? "RST_WAIT2" :
|
|
|
|
|
|
control_state == INT_WAIT1 ? "INT_WAIT1" :
|
|
control_state == INT_WAIT2 ? "INT_WAIT2" :
|
|
control_state == EXECUTE ? "EXECUTE" :
|
|
control_state == PRE_FETCH_EXEC ? "PRE_FETCH_EXEC" :
|
|
control_state == MEM_WAIT1 ? "MEM_WAIT1" :
|
|
control_state == MEM_WAIT2 ? "MEM_WAIT2" :
|
|
control_state == PC_STALL1 ? "PC_STALL1" :
|
|
control_state == PC_STALL2 ? "PC_STALL2" :
|
|
control_state == MTRANS_EXEC1 ? "MTRANS_EXEC1" :
|
|
control_state == MTRANS_EXEC2 ? "MTRANS_EXEC2" :
|
|
control_state == MTRANS_EXEC3 ? "MTRANS_EXEC3" :
|
|
control_state == MTRANS_EXEC3B ? "MTRANS_EXEC3B" :
|
|
control_state == MTRANS_EXEC4 ? "MTRANS_EXEC4" :
|
|
control_state == MTRANS5_ABORT ? "MTRANS5_ABORT" :
|
|
control_state == MULT_PROC1 ? "MULT_PROC1" :
|
|
control_state == MULT_PROC2 ? "MULT_PROC2" :
|
|
control_state == MULT_STORE ? "MULT_STORE" :
|
|
control_state == MULT_ACCUMU ? "MULT_ACCUMU" :
|
|
control_state == SWAP_WRITE ? "SWAP_WRITE" :
|
|
control_state == SWAP_WAIT1 ? "SWAP_WAIT1" :
|
|
control_state == SWAP_WAIT2 ? "SWAP_WAIT2" :
|
|
control_state == COPRO_WAIT ? "COPRO_WAIT" :
|
|
"UNKNOWN " ;
|
|
|
|
assign xMODE = mode_name ( o_status_bits_mode );
|
|
|
|
always @( posedge i_clk )
|
|
if (control_state == EXECUTE && ((instruction[0] === 1'bx) || (instruction[31] === 1'bx)))
|
|
begin
|
|
`TB_ERROR_MESSAGE
|
|
$display("Instruction with x's =%08h", instruction);
|
|
end
|
|
//synopsys translate_on
|
|
|
|
endmodule
|
|
|
|
|
|
|
No newline at end of file
|
No newline at end of file
|