//////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////
|
// //
|
// //
|
// L1 Data Cache for Amber 25 Core //
|
// L1 Data Cache for Amber 25 Core //
|
// //
|
// //
|
// This file is part of the Amber project //
|
// This file is part of the Amber project //
|
// http://www.opencores.org/project,amber //
|
// http://www.opencores.org/project,amber //
|
// //
|
// //
|
// Description //
|
// Description //
|
// Synthesizable L1 Data Cache //
|
// Synthesizable L1 Data Cache //
|
// Cache is 2, 3, 4 or 8 way, 256 line and 16 bytes per line. //
|
// Cache is 2, 3, 4 or 8 way, 256 line and 16 bytes per line. //
|
// The cache policy is write-through and //
|
// The cache policy is write-through and //
|
// read allocate. For swap instructions (SWP and SWPB) the //
|
// read allocate. For swap instructions (SWP and SWPB) the //
|
// location is evicted from the cache and read from main //
|
// location is evicted from the cache and read from main //
|
// memory. //
|
// memory. //
|
// //
|
// //
|
// Author(s): //
|
// Author(s): //
|
// - Conor Santifort, csantifort.amber@gmail.com //
|
// - Conor Santifort, csantifort.amber@gmail.com //
|
// //
|
// //
|
//////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////
|
// //
|
// //
|
// Copyright (C) 2011 Authors and OPENCORES.ORG //
|
// Copyright (C) 2011 Authors and OPENCORES.ORG //
|
// //
|
// //
|
// This source file may be used and distributed without //
|
// This source file may be used and distributed without //
|
// restriction provided that this copyright statement is not //
|
// restriction provided that this copyright statement is not //
|
// removed from the file and that any derivative work contains //
|
// removed from the file and that any derivative work contains //
|
// the original copyright notice and the associated disclaimer. //
|
// the original copyright notice and the associated disclaimer. //
|
// //
|
// //
|
// This source file is free software; you can redistribute it //
|
// This source file is free software; you can redistribute it //
|
// and/or modify it under the terms of the GNU Lesser General //
|
// and/or modify it under the terms of the GNU Lesser General //
|
// Public License as published by the Free Software Foundation; //
|
// Public License as published by the Free Software Foundation; //
|
// either version 2.1 of the License, or (at your option) any //
|
// either version 2.1 of the License, or (at your option) any //
|
// later version. //
|
// later version. //
|
// //
|
// //
|
// This source is distributed in the hope that it will be //
|
// This source is distributed in the hope that it will be //
|
// useful, but WITHOUT ANY WARRANTY; without even the implied //
|
// useful, but WITHOUT ANY WARRANTY; without even the implied //
|
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //
|
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //
|
// PURPOSE. See the GNU Lesser General Public License for more //
|
// PURPOSE. See the GNU Lesser General Public License for more //
|
// details. //
|
// details. //
|
// //
|
// //
|
// You should have received a copy of the GNU Lesser General //
|
// You should have received a copy of the GNU Lesser General //
|
// Public License along with this source; if not, download it //
|
// Public License along with this source; if not, download it //
|
// from http://www.opencores.org/lgpl.shtml //
|
// from http://www.opencores.org/lgpl.shtml //
|
// //
|
// //
|
//////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////
|
|
`include "global_defines.v"
|
`include "a25_config_defines.v"
|
`include "a25_config_defines.v"
|
|
|
module a25_dcache
|
module a25_dcache
|
#(
|
#(
|
|
|
// ---------------------------------------------------------
|
// ---------------------------------------------------------
|
// Cache Configuration
|
// Cache Configuration
|
|
|
// Limited to Linux 4k page sizes -> 256 lines
|
// Limited to Linux 4k page sizes -> 256 lines
|
parameter CACHE_LINES = 256,
|
parameter CACHE_LINES = 256,
|
|
|
// This cannot be changed without some major surgeory on
|
// This cannot be changed without some major surgeory on
|
// this module
|
// this module
|
parameter CACHE_WORDS_PER_LINE = 4,
|
parameter CACHE_WORDS_PER_LINE = 4,
|
|
|
// Changing this parameter is the recommended
|
// Changing this parameter is the recommended
|
// way to change the overall cache size; 2, 4 and 8 ways are supported.
|
// way to change the overall cache size; 2, 4 and 8 ways are supported.
|
// 2 ways -> 8KB cache
|
// 2 ways -> 8KB cache
|
// 4 ways -> 16KB cache
|
// 4 ways -> 16KB cache
|
// 8 ways -> 32KB cache
|
// 8 ways -> 32KB cache
|
parameter WAYS = `A25_DCACHE_WAYS ,
|
parameter WAYS = `A25_DCACHE_WAYS ,
|
|
|
// derived configuration parameters
|
// derived configuration parameters
|
parameter CACHE_ADDR_WIDTH = log2 ( CACHE_LINES ), // = 8
|
parameter CACHE_ADDR_WIDTH = log2 ( CACHE_LINES ), // = 8
|
parameter WORD_SEL_WIDTH = log2 ( CACHE_WORDS_PER_LINE ), // = 2
|
parameter WORD_SEL_WIDTH = log2 ( CACHE_WORDS_PER_LINE ), // = 2
|
parameter TAG_ADDR_WIDTH = 32 - CACHE_ADDR_WIDTH - WORD_SEL_WIDTH - 2, // = 20
|
parameter TAG_ADDR_WIDTH = 32 - CACHE_ADDR_WIDTH - WORD_SEL_WIDTH - 2, // = 20
|
parameter TAG_WIDTH = TAG_ADDR_WIDTH + 1, // = 21, including Valid flag
|
parameter TAG_WIDTH = TAG_ADDR_WIDTH + 1, // = 21, including Valid flag
|
parameter CACHE_LINE_WIDTH = CACHE_WORDS_PER_LINE * 32, // = 128
|
parameter CACHE_LINE_WIDTH = CACHE_WORDS_PER_LINE * 32, // = 128
|
parameter TAG_ADDR32_LSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2, // = 12
|
parameter TAG_ADDR32_LSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2, // = 12
|
parameter CACHE_ADDR32_MSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2 - 1, // = 11
|
parameter CACHE_ADDR32_MSB = CACHE_ADDR_WIDTH + WORD_SEL_WIDTH + 2 - 1, // = 11
|
parameter CACHE_ADDR32_LSB = WORD_SEL_WIDTH + 2 , // = 4
|
parameter CACHE_ADDR32_LSB = WORD_SEL_WIDTH + 2 , // = 4
|
parameter WORD_SEL_MSB = WORD_SEL_WIDTH + 2 - 1, // = 3
|
parameter WORD_SEL_MSB = WORD_SEL_WIDTH + 2 - 1, // = 3
|
parameter WORD_SEL_LSB = 2 // = 2
|
parameter WORD_SEL_LSB = 2 // = 2
|
// ---------------------------------------------------------
|
// ---------------------------------------------------------
|
)
|
)
|
|
|
|
|
(
|
(
|
input i_clk,
|
input i_clk,
|
|
|
// Read / Write requests from core
|
// Read / Write requests from core
|
input i_request,
|
input i_request,
|
input i_exclusive, // exclusive access, part of swap instruction
|
input i_exclusive, // exclusive access, part of swap instruction
|
input [31:0] i_write_data,
|
input [31:0] i_write_data,
|
input i_write_enable, // write request from execute stage
|
input i_write_enable, // write request from execute stage
|
input [31:0] i_address, // registered address from execute
|
input [31:0] i_address, // registered address from execute
|
input [31:0] i_address_nxt, // un-registered version of address from execute stage
|
input [31:0] i_address_nxt, // un-registered version of address from execute stage
|
input [3:0] i_byte_enable,
|
input [3:0] i_byte_enable,
|
input i_cache_enable, // from co-processor 15 configuration register
|
input i_cache_enable, // from co-processor 15 configuration register
|
input i_cache_flush, // from co-processor 15 register
|
input i_cache_flush, // from co-processor 15 register
|
|
|
output [31:0] o_read_data,
|
output [31:0] o_read_data,
|
input i_fetch_stall,
|
input i_fetch_stall,
|
input i_exec_stall,
|
input i_exec_stall,
|
output o_stall,
|
output o_stall,
|
|
|
// WB Read Request
|
// WB Read Request
|
output o_wb_cached_req, // Read Request
|
output o_wb_cached_req, // Read Request
|
input [127:0] i_wb_cached_rdata, // wb bus
|
input [127:0] i_wb_cached_rdata, // wb bus
|
input i_wb_cached_ready // wb_stb && !wb_ack
|
input i_wb_cached_ready // wb_stb && !wb_ack
|
);
|
);
|
|
|
`include "a25_localparams.v"
|
`include "a25_localparams.v"
|
`include "a25_functions.v"
|
`include "a25_functions.v"
|
|
|
// One-hot encoded
|
// One-hot encoded
|
localparam C_INIT = 0,
|
localparam C_INIT = 0,
|
C_CORE = 1,
|
C_CORE = 1,
|
C_FILL = 2,
|
C_FILL = 2,
|
C_INVA = 3,
|
C_INVA = 3,
|
C_STATES = 4;
|
C_STATES = 4;
|
|
|
localparam [3:0] CS_INIT = 4'd0,
|
localparam [3:0] CS_INIT = 4'd0,
|
CS_IDLE = 4'd1,
|
CS_IDLE = 4'd1,
|
CS_FILL = 4'd2,
|
CS_FILL = 4'd2,
|
CS_FILL_COMPLETE = 4'd3,
|
CS_FILL_COMPLETE = 4'd3,
|
CS_TURN_AROUND = 4'd4,
|
CS_TURN_AROUND = 4'd4,
|
CS_WRITE_HIT = 4'd5,
|
CS_WRITE_HIT = 4'd5,
|
CS_WRITE_HIT_WAIT_WB = 4'd6,
|
CS_WRITE_HIT_WAIT_WB = 4'd6,
|
CS_WRITE_MISS_WAIT_WB = 4'd7,
|
CS_WRITE_MISS_WAIT_WB = 4'd7,
|
CS_EX_DELETE = 4'd8;
|
CS_EX_DELETE = 4'd8;
|
|
|
|
|
reg [3:0] c_state = CS_IDLE;
|
reg [3:0] c_state = CS_IDLE;
|
reg [C_STATES-1:0] source_sel = 1'd1 << C_CORE;
|
reg [C_STATES-1:0] source_sel = 1'd1 << C_CORE;
|
reg [CACHE_ADDR_WIDTH:0] init_count = 'd0;
|
reg [CACHE_ADDR_WIDTH:0] init_count = 'd0;
|
|
|
wire [TAG_WIDTH-1:0] tag_rdata_way [WAYS-1:0];
|
wire [TAG_WIDTH-1:0] tag_rdata_way [WAYS-1:0];
|
wire [CACHE_LINE_WIDTH-1:0] data_rdata_way[WAYS-1:0];
|
wire [CACHE_LINE_WIDTH-1:0] data_rdata_way[WAYS-1:0];
|
wire [WAYS-1:0] data_wenable_way;
|
wire [WAYS-1:0] data_wenable_way;
|
wire [WAYS-1:0] data_hit_way;
|
wire [WAYS-1:0] data_hit_way;
|
reg [WAYS-1:0] data_hit_way_r = 'd0;
|
reg [WAYS-1:0] data_hit_way_r = 'd0;
|
wire [WAYS-1:0] tag_wenable_way;
|
wire [WAYS-1:0] tag_wenable_way;
|
reg [WAYS-1:0] select_way = 'd0;
|
reg [WAYS-1:0] select_way = 'd0;
|
wire [WAYS-1:0] next_way;
|
wire [WAYS-1:0] next_way;
|
reg [WAYS-1:0] valid_bits_r = 'd0;
|
reg [WAYS-1:0] valid_bits_r = 'd0;
|
|
|
reg [3:0] random_num = 4'hf;
|
reg [3:0] random_num = 4'hf;
|
|
|
wire [CACHE_ADDR_WIDTH-1:0] tag_address;
|
wire [CACHE_ADDR_WIDTH-1:0] tag_address;
|
wire [TAG_WIDTH-1:0] tag_wdata;
|
wire [TAG_WIDTH-1:0] tag_wdata;
|
wire tag_wenable;
|
wire tag_wenable;
|
|
|
wire [CACHE_LINE_WIDTH-1:0] read_miss_wdata;
|
wire [CACHE_LINE_WIDTH-1:0] read_miss_wdata;
|
wire [CACHE_LINE_WIDTH-1:0] write_hit_wdata;
|
wire [CACHE_LINE_WIDTH-1:0] write_hit_wdata;
|
reg [CACHE_LINE_WIDTH-1:0] data_wdata_r = 'd0;
|
reg [CACHE_LINE_WIDTH-1:0] data_wdata_r = 'd0;
|
wire [CACHE_LINE_WIDTH-1:0] consecutive_write_wdata;
|
wire [CACHE_LINE_WIDTH-1:0] consecutive_write_wdata;
|
wire [CACHE_LINE_WIDTH-1:0] data_wdata;
|
wire [CACHE_LINE_WIDTH-1:0] data_wdata;
|
wire [CACHE_ADDR_WIDTH-1:0] data_address;
|
wire [CACHE_ADDR_WIDTH-1:0] data_address;
|
wire [31:0] write_data_word;
|
wire [31:0] write_data_word;
|
|
|
wire idle_hit;
|
wire idle_hit;
|
wire read_miss;
|
wire read_miss;
|
wire write_miss;
|
wire write_miss;
|
wire write_hit;
|
wire write_hit;
|
wire consecutive_write;
|
wire consecutive_write;
|
wire fill_state;
|
wire fill_state;
|
|
|
reg [31:0] miss_address = 'd0;
|
reg [31:0] miss_address = 'd0;
|
wire [CACHE_LINE_WIDTH-1:0] hit_rdata;
|
wire [CACHE_LINE_WIDTH-1:0] hit_rdata;
|
|
|
wire read_stall;
|
wire read_stall;
|
wire write_stall;
|
wire write_stall;
|
wire cache_busy_stall;
|
wire cache_busy_stall;
|
wire core_stall;
|
wire core_stall;
|
wire write_state;
|
wire write_state;
|
|
|
wire request_pulse;
|
wire request_pulse;
|
wire request_hold;
|
wire request_hold;
|
reg request_r = 'd0;
|
reg request_r = 'd0;
|
wire [CACHE_ADDR_WIDTH-1:0] address;
|
wire [CACHE_ADDR_WIDTH-1:0] address;
|
reg [CACHE_LINE_WIDTH-1:0] wb_rdata_burst = 'd0;
|
reg [CACHE_LINE_WIDTH-1:0] wb_rdata_burst = 'd0;
|
|
|
wire exclusive_access;
|
wire exclusive_access;
|
wire ex_read_hit;
|
wire ex_read_hit;
|
reg ex_read_hit_r = 'd0;
|
reg ex_read_hit_r = 'd0;
|
reg [WAYS-1:0] ex_read_hit_way = 'd0;
|
reg [WAYS-1:0] ex_read_hit_way = 'd0;
|
reg [CACHE_ADDR_WIDTH-1:0] ex_read_address;
|
reg [CACHE_ADDR_WIDTH-1:0] ex_read_address;
|
wire ex_read_hit_clear;
|
wire ex_read_hit_clear;
|
wire ex_read_cache_busy;
|
wire ex_read_cache_busy;
|
|
|
reg [31:0] wb_address = 'd0;
|
reg [31:0] wb_address = 'd0;
|
wire rbuf_hit = 'd0;
|
wire rbuf_hit = 'd0;
|
wire wb_hit;
|
wire wb_hit;
|
wire [127:0] read_data128;
|
wire [127:0] read_data128;
|
genvar i;
|
genvar i;
|
|
|
// ======================================
|
// ======================================
|
// Address to use for cache access
|
// Address to use for cache access
|
// ======================================
|
// ======================================
|
// If currently stalled then the address for the next
|
// If currently stalled then the address for the next
|
// cycle will be the same as it is in the current cycle
|
// cycle will be the same as it is in the current cycle
|
//
|
//
|
assign core_stall = i_fetch_stall || i_exec_stall || o_stall;
|
assign core_stall = i_fetch_stall || i_exec_stall || o_stall;
|
|
|
assign address = core_stall ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
assign address = core_stall ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
i_address_nxt[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] ;
|
i_address_nxt[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] ;
|
|
|
// ======================================
|
// ======================================
|
// Outputs
|
// Outputs
|
// ======================================
|
// ======================================
|
|
|
assign read_data128 = wb_hit ? i_wb_cached_rdata : hit_rdata;
|
assign read_data128 = wb_hit ? i_wb_cached_rdata : hit_rdata;
|
|
|
assign o_read_data = i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd0 ? read_data128 [31:0] :
|
assign o_read_data = i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd0 ? read_data128 [31:0] :
|
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd1 ? read_data128 [63:32] :
|
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd1 ? read_data128 [63:32] :
|
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd2 ? read_data128 [95:64] :
|
i_address[WORD_SEL_MSB:WORD_SEL_LSB] == 2'd2 ? read_data128 [95:64] :
|
read_data128 [127:96] ;
|
read_data128 [127:96] ;
|
|
|
// Don't allow the cache to stall the wb i/f for an exclusive access
|
// Don't allow the cache to stall the wb i/f for an exclusive access
|
// The cache needs a couple of cycles to flush a potential copy of the exclusive
|
// The cache needs a couple of cycles to flush a potential copy of the exclusive
|
// address, but the wb can do the access in parallel. So there is no
|
// address, but the wb can do the access in parallel. So there is no
|
// stall in the state CS_EX_DELETE, even though the cache is out of action.
|
// stall in the state CS_EX_DELETE, even though the cache is out of action.
|
// This works fine as long as the wb is stalling the core
|
// This works fine as long as the wb is stalling the core
|
assign o_stall = request_hold && ( read_stall || write_stall || cache_busy_stall || ex_read_cache_busy );
|
assign o_stall = request_hold && ( read_stall || write_stall || cache_busy_stall || ex_read_cache_busy );
|
|
|
assign o_wb_cached_req = ( (read_miss || write_miss || write_hit) && c_state == CS_IDLE ) || consecutive_write;
|
assign o_wb_cached_req = ( (read_miss || write_miss || write_hit) && c_state == CS_IDLE ) || consecutive_write;
|
|
|
|
|
// ======================================
|
// ======================================
|
// Cache State Machine
|
// Cache State Machine
|
// ======================================
|
// ======================================
|
|
|
// Little State Machine to Flush Tag RAMS
|
// Little State Machine to Flush Tag RAMS
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( i_cache_flush )
|
if ( i_cache_flush )
|
begin
|
begin
|
c_state <= CS_INIT;
|
c_state <= CS_INIT;
|
source_sel <= 1'd1 << C_INIT;
|
source_sel <= 1'd1 << C_INIT;
|
init_count <= 'd0;
|
init_count <= 'd0;
|
`ifdef A25_CACHE_DEBUG
|
`ifdef A25_CACHE_DEBUG
|
`TB_DEBUG_MESSAGE
|
`TB_DEBUG_MESSAGE
|
$display("Cache Flush");
|
$display("Cache Flush");
|
`endif
|
`endif
|
end
|
end
|
else
|
else
|
case ( c_state )
|
case ( c_state )
|
CS_INIT :
|
CS_INIT :
|
if ( init_count < CACHE_LINES [CACHE_ADDR_WIDTH:0] )
|
if ( init_count < CACHE_LINES [CACHE_ADDR_WIDTH:0] )
|
begin
|
begin
|
init_count <= init_count + 1'd1;
|
init_count <= init_count + 1'd1;
|
source_sel <= 1'd1 << C_INIT;
|
source_sel <= 1'd1 << C_INIT;
|
end
|
end
|
else
|
else
|
begin
|
begin
|
source_sel <= 1'd1 << C_CORE;
|
source_sel <= 1'd1 << C_CORE;
|
c_state <= CS_TURN_AROUND;
|
c_state <= CS_TURN_AROUND;
|
end
|
end
|
|
|
CS_IDLE :
|
CS_IDLE :
|
begin
|
begin
|
source_sel <= 1'd1 << C_CORE;
|
source_sel <= 1'd1 << C_CORE;
|
|
|
if ( ex_read_hit || ex_read_hit_r )
|
if ( ex_read_hit || ex_read_hit_r )
|
begin
|
begin
|
select_way <= data_hit_way | ex_read_hit_way;
|
select_way <= data_hit_way | ex_read_hit_way;
|
c_state <= CS_EX_DELETE;
|
c_state <= CS_EX_DELETE;
|
source_sel <= 1'd1 << C_INVA;
|
source_sel <= 1'd1 << C_INVA;
|
end
|
end
|
else if ( read_miss )
|
else if ( read_miss )
|
c_state <= CS_FILL;
|
c_state <= CS_FILL;
|
else if ( write_hit )
|
else if ( write_hit )
|
begin
|
begin
|
if ( i_wb_cached_ready )
|
if ( i_wb_cached_ready )
|
c_state <= CS_WRITE_HIT;
|
c_state <= CS_WRITE_HIT;
|
else
|
else
|
c_state <= CS_WRITE_HIT_WAIT_WB;
|
c_state <= CS_WRITE_HIT_WAIT_WB;
|
end
|
end
|
else if ( write_miss && !i_wb_cached_ready )
|
else if ( write_miss && !i_wb_cached_ready )
|
c_state <= CS_WRITE_MISS_WAIT_WB;
|
c_state <= CS_WRITE_MISS_WAIT_WB;
|
end
|
end
|
|
|
|
|
CS_FILL :
|
CS_FILL :
|
// third read of burst of 4
|
// third read of burst of 4
|
// wb read request asserted, wait for ack
|
// wb read request asserted, wait for ack
|
if ( i_wb_cached_ready )
|
if ( i_wb_cached_ready )
|
begin
|
begin
|
c_state <= CS_FILL_COMPLETE;
|
c_state <= CS_FILL_COMPLETE;
|
source_sel <= 1'd1 << C_FILL;
|
source_sel <= 1'd1 << C_FILL;
|
|
|
// Pick a way to write the cache update into
|
// Pick a way to write the cache update into
|
// Either pick one of the invalid caches, or if all are valid, then pick
|
// Either pick one of the invalid caches, or if all are valid, then pick
|
// one randomly
|
// one randomly
|
|
|
select_way <= next_way;
|
select_way <= next_way;
|
random_num <= {random_num[2], random_num[1], random_num[0],
|
random_num <= {random_num[2], random_num[1], random_num[0],
|
random_num[3]^random_num[2]};
|
random_num[3]^random_num[2]};
|
end
|
end
|
|
|
|
|
// Write the read fetch data in this cycle
|
// Write the read fetch data in this cycle
|
CS_FILL_COMPLETE :
|
CS_FILL_COMPLETE :
|
begin
|
begin
|
// Back to normal cache operations, but
|
// Back to normal cache operations, but
|
// use physical address for first read as
|
// use physical address for first read as
|
// address moved before the stall was asserted for the read_miss
|
// address moved before the stall was asserted for the read_miss
|
// However don't use it if its a non-cached address!
|
// However don't use it if its a non-cached address!
|
source_sel <= 1'd1 << C_CORE;
|
source_sel <= 1'd1 << C_CORE;
|
c_state <= CS_TURN_AROUND;
|
c_state <= CS_TURN_AROUND;
|
end
|
end
|
|
|
|
|
// Ignore the tag read data in this cycle
|
// Ignore the tag read data in this cycle
|
// Wait 1 cycle to pre-read the cache and return to normal operation
|
// Wait 1 cycle to pre-read the cache and return to normal operation
|
CS_TURN_AROUND :
|
CS_TURN_AROUND :
|
begin
|
begin
|
c_state <= CS_IDLE;
|
c_state <= CS_IDLE;
|
end
|
end
|
|
|
|
|
// Flush the entry matching an exclusive access
|
// Flush the entry matching an exclusive access
|
CS_EX_DELETE:
|
CS_EX_DELETE:
|
begin
|
begin
|
`ifdef A25_CACHE_DEBUG
|
`ifdef A25_CACHE_DEBUG
|
`TB_DEBUG_MESSAGE
|
`TB_DEBUG_MESSAGE
|
$display("Cache deleted Locked entry");
|
$display("Cache deleted Locked entry");
|
`endif
|
`endif
|
c_state <= CS_TURN_AROUND;
|
c_state <= CS_TURN_AROUND;
|
source_sel <= 1'd1 << C_CORE;
|
source_sel <= 1'd1 << C_CORE;
|
end
|
end
|
|
|
|
|
CS_WRITE_HIT:
|
CS_WRITE_HIT:
|
if ( !consecutive_write )
|
if ( !consecutive_write )
|
c_state <= CS_IDLE;
|
c_state <= CS_IDLE;
|
|
|
|
|
CS_WRITE_HIT_WAIT_WB:
|
CS_WRITE_HIT_WAIT_WB:
|
// wait for an ack on the wb bus to complete the write
|
// wait for an ack on the wb bus to complete the write
|
if ( i_wb_cached_ready )
|
if ( i_wb_cached_ready )
|
c_state <= CS_IDLE;
|
c_state <= CS_IDLE;
|
|
|
|
|
CS_WRITE_MISS_WAIT_WB:
|
CS_WRITE_MISS_WAIT_WB:
|
// wait for an ack on the wb bus to complete the write
|
// wait for an ack on the wb bus to complete the write
|
if ( i_wb_cached_ready )
|
if ( i_wb_cached_ready )
|
c_state <= CS_IDLE;
|
c_state <= CS_IDLE;
|
|
|
endcase
|
endcase
|
|
|
|
|
// ======================================
|
// ======================================
|
// Capture WB Block Read - burst of 4 words
|
// Capture WB Block Read - burst of 4 words
|
// ======================================
|
// ======================================
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( i_wb_cached_ready )
|
if ( i_wb_cached_ready )
|
wb_rdata_burst <= i_wb_cached_rdata;
|
wb_rdata_burst <= i_wb_cached_rdata;
|
|
|
|
|
|
|
// ======================================
|
// ======================================
|
// Miss Address
|
// Miss Address
|
// ======================================
|
// ======================================
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( o_wb_cached_req || write_hit )
|
if ( o_wb_cached_req || write_hit )
|
miss_address <= i_address;
|
miss_address <= i_address;
|
|
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( write_hit )
|
if ( write_hit )
|
begin
|
begin
|
data_hit_way_r <= data_hit_way;
|
data_hit_way_r <= data_hit_way;
|
end
|
end
|
|
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( write_hit || consecutive_write )
|
if ( write_hit || consecutive_write )
|
begin
|
begin
|
data_wdata_r <= data_wdata;
|
data_wdata_r <= data_wdata;
|
end
|
end
|
|
|
assign consecutive_write = miss_address[31:4] == i_address[31:4] &&
|
assign consecutive_write = miss_address[31:4] == i_address[31:4] &&
|
i_write_enable &&
|
i_write_enable &&
|
c_state == CS_WRITE_HIT &&
|
c_state == CS_WRITE_HIT &&
|
request_pulse;
|
request_pulse;
|
|
|
|
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
if ( o_wb_cached_req )
|
if ( o_wb_cached_req )
|
wb_address <= i_address;
|
wb_address <= i_address;
|
else if ( i_wb_cached_ready && fill_state )
|
else if ( i_wb_cached_ready && fill_state )
|
wb_address <= {wb_address[31:4], wb_address[3:2] + 1'd1, 2'd0};
|
wb_address <= {wb_address[31:4], wb_address[3:2] + 1'd1, 2'd0};
|
|
|
assign fill_state = c_state == CS_FILL ;
|
assign fill_state = c_state == CS_FILL ;
|
assign wb_hit = i_address == wb_address && i_wb_cached_ready && fill_state;
|
assign wb_hit = i_address == wb_address && i_wb_cached_ready && fill_state;
|
|
|
|
|
// ======================================
|
// ======================================
|
// Hold Requests
|
// Hold Requests
|
// ======================================
|
// ======================================
|
always @(posedge i_clk)
|
always @(posedge i_clk)
|
request_r <= (request_pulse || request_r) && o_stall;
|
request_r <= (request_pulse || request_r) && o_stall;
|
|
|
assign request_hold = request_pulse || request_r;
|
assign request_hold = request_pulse || request_r;
|
|
|
|
|
// ======================================
|
// ======================================
|
// Remember Read-Modify-Write Hit
|
// Remember Read-Modify-Write Hit
|
// ======================================
|
// ======================================
|
assign ex_read_hit_clear = c_state == CS_EX_DELETE;
|
assign ex_read_hit_clear = c_state == CS_EX_DELETE;
|
|
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( ex_read_hit_clear )
|
if ( ex_read_hit_clear )
|
begin
|
begin
|
ex_read_hit_r <= 1'd0;
|
ex_read_hit_r <= 1'd0;
|
ex_read_hit_way <= 'd0;
|
ex_read_hit_way <= 'd0;
|
end
|
end
|
else if ( ex_read_hit )
|
else if ( ex_read_hit )
|
begin
|
begin
|
|
|
`ifdef A25_CACHE_DEBUG
|
`ifdef A25_CACHE_DEBUG
|
`TB_DEBUG_MESSAGE
|
`TB_DEBUG_MESSAGE
|
$display ("Exclusive access cache hit address 0x%08h", i_address);
|
$display ("Exclusive access cache hit address 0x%08h", i_address);
|
`endif
|
`endif
|
|
|
ex_read_hit_r <= 1'd1;
|
ex_read_hit_r <= 1'd1;
|
ex_read_hit_way <= data_hit_way;
|
ex_read_hit_way <= data_hit_way;
|
end
|
end
|
else if ( c_state == CS_FILL_COMPLETE && ex_read_hit_r )
|
else if ( c_state == CS_FILL_COMPLETE && ex_read_hit_r )
|
ex_read_hit_way <= select_way;
|
ex_read_hit_way <= select_way;
|
|
|
|
|
always @ (posedge i_clk)
|
always @ (posedge i_clk)
|
if ( ex_read_hit )
|
if ( ex_read_hit )
|
ex_read_address <= i_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB];
|
ex_read_address <= i_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB];
|
|
|
|
|
assign tag_address = source_sel[C_FILL] ? miss_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
assign tag_address = source_sel[C_FILL] ? miss_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
source_sel[C_INVA] ? ex_read_address :
|
source_sel[C_INVA] ? ex_read_address :
|
source_sel[C_INIT] ? init_count[CACHE_ADDR_WIDTH-1:0] :
|
source_sel[C_INIT] ? init_count[CACHE_ADDR_WIDTH-1:0] :
|
source_sel[C_CORE] ? address :
|
source_sel[C_CORE] ? address :
|
{CACHE_ADDR_WIDTH{1'd0}} ;
|
{CACHE_ADDR_WIDTH{1'd0}} ;
|
|
|
|
|
assign data_address = consecutive_write ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
assign data_address = consecutive_write ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
write_hit ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
write_hit ? i_address [CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
source_sel[C_FILL] ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
source_sel[C_FILL] ? miss_address[CACHE_ADDR32_MSB:CACHE_ADDR32_LSB] :
|
source_sel[C_CORE] ? address :
|
source_sel[C_CORE] ? address :
|
{CACHE_ADDR_WIDTH{1'd0}} ;
|
{CACHE_ADDR_WIDTH{1'd0}} ;
|
|
|
|
|
assign tag_wdata = source_sel[C_FILL] ? {1'd1, miss_address[31:TAG_ADDR32_LSB]} :
|
assign tag_wdata = source_sel[C_FILL] ? {1'd1, miss_address[31:TAG_ADDR32_LSB]} :
|
{TAG_WIDTH{1'd0}} ;
|
{TAG_WIDTH{1'd0}} ;
|
|
|
|
|
// Data comes in off the WB bus in wrap4 with the missed data word first
|
// Data comes in off the WB bus in wrap4 with the missed data word first
|
assign data_wdata = write_hit && c_state == CS_IDLE ? write_hit_wdata :
|
assign data_wdata = write_hit && c_state == CS_IDLE ? write_hit_wdata :
|
consecutive_write ? consecutive_write_wdata :
|
consecutive_write ? consecutive_write_wdata :
|
read_miss_wdata ;
|
read_miss_wdata ;
|
|
|
assign read_miss_wdata = wb_rdata_burst;
|
assign read_miss_wdata = wb_rdata_burst;
|
|
|
|
|
assign write_hit_wdata = i_address[3:2] == 2'd0 ? {hit_rdata[127:32], write_data_word } :
|
assign write_hit_wdata = i_address[3:2] == 2'd0 ? {hit_rdata[127:32], write_data_word } :
|
i_address[3:2] == 2'd1 ? {hit_rdata[127:64], write_data_word, hit_rdata[31:0] } :
|
i_address[3:2] == 2'd1 ? {hit_rdata[127:64], write_data_word, hit_rdata[31:0] } :
|
i_address[3:2] == 2'd2 ? {hit_rdata[127:96], write_data_word, hit_rdata[63:0] } :
|
i_address[3:2] == 2'd2 ? {hit_rdata[127:96], write_data_word, hit_rdata[63:0] } :
|
{ write_data_word, hit_rdata[95:0] } ;
|
{ write_data_word, hit_rdata[95:0] } ;
|
wire [31:0] con_read_data_word;
|
wire [31:0] con_read_data_word;
|
wire [31:0] con_write_data_word;
|
wire [31:0] con_write_data_word;
|
|
|
assign consecutive_write_wdata =
|
assign consecutive_write_wdata =
|
i_address[3:2] == 2'd0 ? {data_wdata_r[127:32], con_write_data_word } :
|
i_address[3:2] == 2'd0 ? {data_wdata_r[127:32], con_write_data_word } :
|
i_address[3:2] == 2'd1 ? {data_wdata_r[127:64], con_write_data_word, data_wdata_r[31:0] } :
|
i_address[3:2] == 2'd1 ? {data_wdata_r[127:64], con_write_data_word, data_wdata_r[31:0] } :
|
i_address[3:2] == 2'd2 ? {data_wdata_r[127:96], con_write_data_word, data_wdata_r[63:0] } :
|
i_address[3:2] == 2'd2 ? {data_wdata_r[127:96], con_write_data_word, data_wdata_r[63:0] } :
|
{ con_write_data_word, data_wdata_r[95:0] } ;
|
{ con_write_data_word, data_wdata_r[95:0] } ;
|
assign con_read_data_word =
|
assign con_read_data_word =
|
i_address[3:2] == 2'd0 ? data_wdata_r[ 31: 0] :
|
i_address[3:2] == 2'd0 ? data_wdata_r[ 31: 0] :
|
i_address[3:2] == 2'd1 ? data_wdata_r[ 63: 32] :
|
i_address[3:2] == 2'd1 ? data_wdata_r[ 63: 32] :
|
i_address[3:2] == 2'd2 ? data_wdata_r[ 95: 64] :
|
i_address[3:2] == 2'd2 ? data_wdata_r[ 95: 64] :
|
data_wdata_r[127: 96] ;
|
data_wdata_r[127: 96] ;
|
|
|
|
|
assign con_write_data_word =
|
assign con_write_data_word =
|
i_byte_enable == 4'b0001 ? { con_read_data_word[31: 8], i_write_data[ 7: 0] } :
|
i_byte_enable == 4'b0001 ? { con_read_data_word[31: 8], i_write_data[ 7: 0] } :
|
i_byte_enable == 4'b0010 ? { con_read_data_word[31:16], i_write_data[15: 8], con_read_data_word[ 7:0]} :
|
i_byte_enable == 4'b0010 ? { con_read_data_word[31:16], i_write_data[15: 8], con_read_data_word[ 7:0]} :
|
i_byte_enable == 4'b0100 ? { con_read_data_word[31:24], i_write_data[23:16], con_read_data_word[15:0]} :
|
i_byte_enable == 4'b0100 ? { con_read_data_word[31:24], i_write_data[23:16], con_read_data_word[15:0]} :
|
i_byte_enable == 4'b1000 ? { i_write_data[31:24], con_read_data_word[23:0]} :
|
i_byte_enable == 4'b1000 ? { i_write_data[31:24], con_read_data_word[23:0]} :
|
i_byte_enable == 4'b0011 ? { con_read_data_word[31:16], i_write_data[15: 0] } :
|
i_byte_enable == 4'b0011 ? { con_read_data_word[31:16], i_write_data[15: 0] } :
|
i_byte_enable == 4'b1100 ? { i_write_data[31:16], con_read_data_word[15:0]} :
|
i_byte_enable == 4'b1100 ? { i_write_data[31:16], con_read_data_word[15:0]} :
|
i_write_data ;
|
i_write_data ;
|
|
|
|
|
|
|
|
|
// Use Byte Enables
|
// Use Byte Enables
|
assign write_data_word = i_byte_enable == 4'b0001 ? { o_read_data[31: 8], i_write_data[ 7: 0] } :
|
assign write_data_word = i_byte_enable == 4'b0001 ? { o_read_data[31: 8], i_write_data[ 7: 0] } :
|
i_byte_enable == 4'b0010 ? { o_read_data[31:16], i_write_data[15: 8], o_read_data[ 7:0]} :
|
i_byte_enable == 4'b0010 ? { o_read_data[31:16], i_write_data[15: 8], o_read_data[ 7:0]} :
|
i_byte_enable == 4'b0100 ? { o_read_data[31:24], i_write_data[23:16], o_read_data[15:0]} :
|
i_byte_enable == 4'b0100 ? { o_read_data[31:24], i_write_data[23:16], o_read_data[15:0]} :
|
i_byte_enable == 4'b1000 ? { i_write_data[31:24], o_read_data[23:0]} :
|
i_byte_enable == 4'b1000 ? { i_write_data[31:24], o_read_data[23:0]} :
|
i_byte_enable == 4'b0011 ? { o_read_data[31:16], i_write_data[15: 0] } :
|
i_byte_enable == 4'b0011 ? { o_read_data[31:16], i_write_data[15: 0] } :
|
i_byte_enable == 4'b1100 ? { i_write_data[31:16], o_read_data[15:0]} :
|
i_byte_enable == 4'b1100 ? { i_write_data[31:16], o_read_data[15:0]} :
|
i_write_data ;
|
i_write_data ;
|
|
|
|
|
assign tag_wenable = source_sel[C_INVA] ? 1'd1 :
|
assign tag_wenable = source_sel[C_INVA] ? 1'd1 :
|
source_sel[C_FILL] ? 1'd1 :
|
source_sel[C_FILL] ? 1'd1 :
|
source_sel[C_INIT] ? 1'd1 :
|
source_sel[C_INIT] ? 1'd1 :
|
source_sel[C_CORE] ? 1'd0 :
|
source_sel[C_CORE] ? 1'd0 :
|
1'd0 ;
|
1'd0 ;
|
|
|
|
|
assign request_pulse = i_request && i_cache_enable;
|
assign request_pulse = i_request && i_cache_enable;
|
|
|
assign exclusive_access = i_exclusive && i_cache_enable;
|
assign exclusive_access = i_exclusive && i_cache_enable;
|
|
|
|
|
assign idle_hit = |data_hit_way;
|
assign idle_hit = |data_hit_way;
|
|
|
assign write_hit = request_hold && i_write_enable && idle_hit;
|
assign write_hit = request_hold && i_write_enable && idle_hit;
|
|
|
assign write_miss = request_hold && i_write_enable && !idle_hit && !consecutive_write;
|
assign write_miss = request_hold && i_write_enable && !idle_hit && !consecutive_write;
|
|
|
assign read_miss = request_hold && !idle_hit && !i_write_enable;
|
assign read_miss = request_hold && !idle_hit && !i_write_enable;
|
|
|
// Exclusive read idle_hit
|
// Exclusive read idle_hit
|
assign ex_read_hit = exclusive_access && !i_write_enable && idle_hit;
|
assign ex_read_hit = exclusive_access && !i_write_enable && idle_hit;
|
|
|
// Added to fix rare swap bug which occurs when the cache starts
|
// Added to fix rare swap bug which occurs when the cache starts
|
// a fill just as the swap instruction starts to execute. The cache
|
// a fill just as the swap instruction starts to execute. The cache
|
// fails to check for a read idle_hit on the swap read cycle.
|
// fails to check for a read idle_hit on the swap read cycle.
|
// This signal stalls the core in that case until after the
|
// This signal stalls the core in that case until after the
|
// fill has completed.
|
// fill has completed.
|
assign ex_read_cache_busy = exclusive_access && !i_write_enable && c_state != CS_IDLE;
|
assign ex_read_cache_busy = exclusive_access && !i_write_enable && c_state != CS_IDLE;
|
|
|
// Need to stall for a write miss to wait for the current wb
|
// Need to stall for a write miss to wait for the current wb
|
// read miss access to complete. Also for a write idle_hit, need
|
// read miss access to complete. Also for a write idle_hit, need
|
// to stall for 1 cycle while the data cache is being written to
|
// to stall for 1 cycle while the data cache is being written to
|
assign write_state = c_state == CS_IDLE || c_state == CS_WRITE_HIT ||
|
assign write_state = c_state == CS_IDLE || c_state == CS_WRITE_HIT ||
|
c_state == CS_WRITE_HIT_WAIT_WB || c_state == CS_WRITE_MISS_WAIT_WB;
|
c_state == CS_WRITE_HIT_WAIT_WB || c_state == CS_WRITE_MISS_WAIT_WB;
|
|
|
assign write_stall = (write_miss && !(i_wb_cached_ready && write_state)) || (write_hit && !i_wb_cached_ready);
|
assign write_stall = (write_miss && !(i_wb_cached_ready && write_state)) || (write_hit && !i_wb_cached_ready);
|
|
|
assign read_stall = request_hold && !idle_hit && !rbuf_hit && !wb_hit && !i_write_enable;
|
assign read_stall = request_hold && !idle_hit && !rbuf_hit && !wb_hit && !i_write_enable;
|
|
|
assign cache_busy_stall = c_state == CS_FILL_COMPLETE || c_state == CS_TURN_AROUND || c_state == CS_INIT ||
|
assign cache_busy_stall = c_state == CS_FILL_COMPLETE || c_state == CS_TURN_AROUND || c_state == CS_INIT ||
|
(fill_state && !rbuf_hit && !wb_hit) ||
|
(fill_state && !rbuf_hit && !wb_hit) ||
|
(c_state == CS_WRITE_HIT && !consecutive_write);
|
(c_state == CS_WRITE_HIT && !consecutive_write);
|
|
|
|
|
// ======================================
|
// ======================================
|
// Instantiate RAMS
|
// Instantiate RAMS
|
// ======================================
|
// ======================================
|
|
|
generate
|
generate
|
for ( i=0; i<WAYS;i=i+1 ) begin : rams
|
for ( i=0; i<WAYS;i=i+1 ) begin : rams
|
|
|
// Tag RAMs
|
// Tag RAMs
|
`ifdef XILINX_SPARTAN6_FPGA
|
`ifdef XILINX_SPARTAN6_FPGA
|
xs6_sram_256x21_line_en
|
xs6_sram_256x21_line_en
|
`endif
|
`endif
|
|
|
`ifdef XILINX_VIRTEX6_FPGA
|
`ifdef XILINX_VIRTEX6_FPGA
|
xv6_sram_256x21_line_en
|
xv6_sram_256x21_line_en
|
`endif
|
`endif
|
|
|
`ifndef XILINX_FPGA
|
`ifndef XILINX_FPGA
|
generic_sram_line_en
|
generic_sram_line_en
|
`endif
|
`endif
|
|
|
#(
|
#(
|
.DATA_WIDTH ( TAG_WIDTH ),
|
.DATA_WIDTH ( TAG_WIDTH ),
|
.INITIALIZE_TO_ZERO ( 1 ),
|
.INITIALIZE_TO_ZERO ( 1 ),
|
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH ))
|
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH ))
|
u_tag (
|
u_tag (
|
.i_clk ( i_clk ),
|
.i_clk ( i_clk ),
|
.i_write_data ( tag_wdata ),
|
.i_write_data ( tag_wdata ),
|
.i_write_enable ( tag_wenable_way[i] ),
|
.i_write_enable ( tag_wenable_way[i] ),
|
.i_address ( tag_address ),
|
.i_address ( tag_address ),
|
|
|
.o_read_data ( tag_rdata_way[i] )
|
.o_read_data ( tag_rdata_way[i] )
|
);
|
);
|
|
|
// Data RAMs
|
// Data RAMs
|
`ifdef XILINX_SPARTAN6_FPGA
|
`ifdef XILINX_SPARTAN6_FPGA
|
xs6_sram_256x128_byte_en
|
xs6_sram_256x128_byte_en
|
`endif
|
`endif
|
|
|
`ifdef XILINX_VIRTEX6_FPGA
|
`ifdef XILINX_VIRTEX6_FPGA
|
xv6_sram_256x128_byte_en
|
xv6_sram_256x128_byte_en
|
`endif
|
`endif
|
|
|
`ifndef XILINX_FPGA
|
`ifndef XILINX_FPGA
|
generic_sram_byte_en
|
generic_sram_byte_en
|
`endif
|
`endif
|
|
|
#(
|
#(
|
.DATA_WIDTH ( CACHE_LINE_WIDTH) ,
|
.DATA_WIDTH ( CACHE_LINE_WIDTH) ,
|
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH) )
|
.ADDRESS_WIDTH ( CACHE_ADDR_WIDTH) )
|
u_data (
|
u_data (
|
.i_clk ( i_clk ),
|
.i_clk ( i_clk ),
|
.i_write_data ( data_wdata ),
|
.i_write_data ( data_wdata ),
|
.i_write_enable ( data_wenable_way[i] ),
|
.i_write_enable ( data_wenable_way[i] ),
|
.i_address ( data_address ),
|
.i_address ( data_address ),
|
.i_byte_enable ( {CACHE_LINE_WIDTH/8{1'd1}} ),
|
.i_byte_enable ( {CACHE_LINE_WIDTH/8{1'd1}} ),
|
.o_read_data ( data_rdata_way[i] )
|
.o_read_data ( data_rdata_way[i] )
|
);
|
);
|
|
|
|
|
// Per tag-ram write-enable
|
// Per tag-ram write-enable
|
assign tag_wenable_way[i] = tag_wenable && ( select_way[i] || source_sel[C_INIT] );
|
assign tag_wenable_way[i] = tag_wenable && ( select_way[i] || source_sel[C_INIT] );
|
|
|
// Per data-ram write-enable
|
// Per data-ram write-enable
|
assign data_wenable_way[i] = (source_sel[C_FILL] && select_way[i]) ||
|
assign data_wenable_way[i] = (source_sel[C_FILL] && select_way[i]) ||
|
(write_hit && data_hit_way[i] && c_state == CS_IDLE) ||
|
(write_hit && data_hit_way[i] && c_state == CS_IDLE) ||
|
(consecutive_write && data_hit_way_r[i]);
|
(consecutive_write && data_hit_way_r[i]);
|
// Per data-ram idle_hit flag
|
// Per data-ram idle_hit flag
|
assign data_hit_way[i] = tag_rdata_way[i][TAG_WIDTH-1] &&
|
assign data_hit_way[i] = tag_rdata_way[i][TAG_WIDTH-1] &&
|
tag_rdata_way[i][TAG_ADDR_WIDTH-1:0] == i_address[31:TAG_ADDR32_LSB] &&
|
tag_rdata_way[i][TAG_ADDR_WIDTH-1:0] == i_address[31:TAG_ADDR32_LSB] &&
|
c_state == CS_IDLE;
|
c_state == CS_IDLE;
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
|
|
// ======================================
|
// ======================================
|
// Register Valid Bits
|
// Register Valid Bits
|
// ======================================
|
// ======================================
|
generate
|
generate
|
if ( WAYS == 2 ) begin : valid_bits_2ways
|
if ( WAYS == 2 ) begin : valid_bits_2ways
|
|
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( c_state == CS_IDLE )
|
if ( c_state == CS_IDLE )
|
valid_bits_r <= {tag_rdata_way[1][TAG_WIDTH-1],
|
valid_bits_r <= {tag_rdata_way[1][TAG_WIDTH-1],
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
|
|
end
|
end
|
else if ( WAYS == 3 ) begin : valid_bits_3ways
|
else if ( WAYS == 3 ) begin : valid_bits_3ways
|
|
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( c_state == CS_IDLE )
|
if ( c_state == CS_IDLE )
|
valid_bits_r <= {tag_rdata_way[2][TAG_WIDTH-1],
|
valid_bits_r <= {tag_rdata_way[2][TAG_WIDTH-1],
|
tag_rdata_way[1][TAG_WIDTH-1],
|
tag_rdata_way[1][TAG_WIDTH-1],
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
|
|
end
|
end
|
else if ( WAYS == 4 ) begin : valid_bits_4ways
|
else if ( WAYS == 4 ) begin : valid_bits_4ways
|
|
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( c_state == CS_IDLE )
|
if ( c_state == CS_IDLE )
|
valid_bits_r <= {tag_rdata_way[3][TAG_WIDTH-1],
|
valid_bits_r <= {tag_rdata_way[3][TAG_WIDTH-1],
|
tag_rdata_way[2][TAG_WIDTH-1],
|
tag_rdata_way[2][TAG_WIDTH-1],
|
tag_rdata_way[1][TAG_WIDTH-1],
|
tag_rdata_way[1][TAG_WIDTH-1],
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
|
|
end
|
end
|
else begin : valid_bits_8ways
|
else begin : valid_bits_8ways
|
|
|
always @ ( posedge i_clk )
|
always @ ( posedge i_clk )
|
if ( c_state == CS_IDLE )
|
if ( c_state == CS_IDLE )
|
valid_bits_r <= {tag_rdata_way[7][TAG_WIDTH-1],
|
valid_bits_r <= {tag_rdata_way[7][TAG_WIDTH-1],
|
tag_rdata_way[6][TAG_WIDTH-1],
|
tag_rdata_way[6][TAG_WIDTH-1],
|
tag_rdata_way[5][TAG_WIDTH-1],
|
tag_rdata_way[5][TAG_WIDTH-1],
|
tag_rdata_way[4][TAG_WIDTH-1],
|
tag_rdata_way[4][TAG_WIDTH-1],
|
tag_rdata_way[3][TAG_WIDTH-1],
|
tag_rdata_way[3][TAG_WIDTH-1],
|
tag_rdata_way[2][TAG_WIDTH-1],
|
tag_rdata_way[2][TAG_WIDTH-1],
|
tag_rdata_way[1][TAG_WIDTH-1],
|
tag_rdata_way[1][TAG_WIDTH-1],
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
tag_rdata_way[0][TAG_WIDTH-1]};
|
|
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
|
|
// ======================================
|
// ======================================
|
// Select read idle_hit data
|
// Select read idle_hit data
|
// ======================================
|
// ======================================
|
|
|
generate
|
generate
|
if ( WAYS == 2 ) begin : read_data_2ways
|
if ( WAYS == 2 ) begin : read_data_2ways
|
|
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
data_hit_way[1] ? data_rdata_way[1] :
|
data_hit_way[1] ? data_rdata_way[1] :
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
|
|
end
|
end
|
else if ( WAYS == 3 ) begin : read_data_3ways
|
else if ( WAYS == 3 ) begin : read_data_3ways
|
|
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
data_hit_way[1] ? data_rdata_way[1] :
|
data_hit_way[1] ? data_rdata_way[1] :
|
data_hit_way[2] ? data_rdata_way[2] :
|
data_hit_way[2] ? data_rdata_way[2] :
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
|
|
end
|
end
|
else if ( WAYS == 4 ) begin : read_data_4ways
|
else if ( WAYS == 4 ) begin : read_data_4ways
|
|
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
data_hit_way[1] ? data_rdata_way[1] :
|
data_hit_way[1] ? data_rdata_way[1] :
|
data_hit_way[2] ? data_rdata_way[2] :
|
data_hit_way[2] ? data_rdata_way[2] :
|
data_hit_way[3] ? data_rdata_way[3] :
|
data_hit_way[3] ? data_rdata_way[3] :
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
|
|
end
|
end
|
else begin : read_data_8ways
|
else begin : read_data_8ways
|
|
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
assign hit_rdata = data_hit_way[0] ? data_rdata_way[0] :
|
data_hit_way[1] ? data_rdata_way[1] :
|
data_hit_way[1] ? data_rdata_way[1] :
|
data_hit_way[2] ? data_rdata_way[2] :
|
data_hit_way[2] ? data_rdata_way[2] :
|
data_hit_way[3] ? data_rdata_way[3] :
|
data_hit_way[3] ? data_rdata_way[3] :
|
data_hit_way[4] ? data_rdata_way[4] :
|
data_hit_way[4] ? data_rdata_way[4] :
|
data_hit_way[5] ? data_rdata_way[5] :
|
data_hit_way[5] ? data_rdata_way[5] :
|
data_hit_way[6] ? data_rdata_way[6] :
|
data_hit_way[6] ? data_rdata_way[6] :
|
data_hit_way[7] ? data_rdata_way[7] :
|
data_hit_way[7] ? data_rdata_way[7] :
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
{CACHE_LINE_WIDTH{1'd1}} ; // all 1's for debug
|
|
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
|
|
// ======================================
|
// ======================================
|
// Function to select the way to use
|
// Function to select the way to use
|
// for fills
|
// for fills
|
// ======================================
|
// ======================================
|
generate
|
generate
|
if ( WAYS == 2 ) begin : pick_way_2ways
|
if ( WAYS == 2 ) begin : pick_way_2ways
|
|
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
|
|
function [WAYS-1:0] pick_way;
|
function [WAYS-1:0] pick_way;
|
input [WAYS-1:0] valid_bits;
|
input [WAYS-1:0] valid_bits;
|
input [3:0] random_num;
|
input [3:0] random_num;
|
begin
|
begin
|
if ( valid_bits[0] == 1'd0 )
|
if ( valid_bits[0] == 1'd0 )
|
// way 0 not occupied so use it
|
// way 0 not occupied so use it
|
pick_way = 2'b01;
|
pick_way = 2'b01;
|
else if ( valid_bits[1] == 1'd0 )
|
else if ( valid_bits[1] == 1'd0 )
|
// way 1 not occupied so use it
|
// way 1 not occupied so use it
|
pick_way = 2'b10;
|
pick_way = 2'b10;
|
else
|
else
|
begin
|
begin
|
// All ways occupied so pick one randomly
|
// All ways occupied so pick one randomly
|
case (random_num[3:1])
|
case (random_num[3:1])
|
3'd0, 3'd3,
|
3'd0, 3'd3,
|
3'd5, 3'd6: pick_way = 2'b10;
|
3'd5, 3'd6: pick_way = 2'b10;
|
default: pick_way = 2'b01;
|
default: pick_way = 2'b01;
|
endcase
|
endcase
|
end
|
end
|
end
|
end
|
endfunction
|
endfunction
|
|
|
end
|
end
|
else if ( WAYS == 3 ) begin : pick_way_3ways
|
else if ( WAYS == 3 ) begin : pick_way_3ways
|
|
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
|
|
function [WAYS-1:0] pick_way;
|
function [WAYS-1:0] pick_way;
|
input [WAYS-1:0] valid_bits;
|
input [WAYS-1:0] valid_bits;
|
input [3:0] random_num;
|
input [3:0] random_num;
|
begin
|
begin
|
if ( valid_bits[0] == 1'd0 )
|
if ( valid_bits[0] == 1'd0 )
|
// way 0 not occupied so use it
|
// way 0 not occupied so use it
|
pick_way = 3'b001;
|
pick_way = 3'b001;
|
else if ( valid_bits[1] == 1'd0 )
|
else if ( valid_bits[1] == 1'd0 )
|
// way 1 not occupied so use it
|
// way 1 not occupied so use it
|
pick_way = 3'b010;
|
pick_way = 3'b010;
|
else if ( valid_bits[2] == 1'd0 )
|
else if ( valid_bits[2] == 1'd0 )
|
// way 2 not occupied so use it
|
// way 2 not occupied so use it
|
pick_way = 3'b100;
|
pick_way = 3'b100;
|
else
|
else
|
begin
|
begin
|
// All ways occupied so pick one randomly
|
// All ways occupied so pick one randomly
|
case (random_num[3:1])
|
case (random_num[3:1])
|
3'd0, 3'd1, 3'd2: pick_way = 3'b010;
|
3'd0, 3'd1, 3'd2: pick_way = 3'b010;
|
3'd2, 3'd3, 3'd4: pick_way = 3'b100;
|
3'd2, 3'd3, 3'd4: pick_way = 3'b100;
|
default: pick_way = 3'b001;
|
default: pick_way = 3'b001;
|
endcase
|
endcase
|
end
|
end
|
end
|
end
|
endfunction
|
endfunction
|
|
|
end
|
end
|
else if ( WAYS == 4 ) begin : pick_way_4ways
|
else if ( WAYS == 4 ) begin : pick_way_4ways
|
|
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
|
|
function [WAYS-1:0] pick_way;
|
function [WAYS-1:0] pick_way;
|
input [WAYS-1:0] valid_bits;
|
input [WAYS-1:0] valid_bits;
|
input [3:0] random_num;
|
input [3:0] random_num;
|
begin
|
begin
|
if ( valid_bits[0] == 1'd0 )
|
if ( valid_bits[0] == 1'd0 )
|
// way 0 not occupied so use it
|
// way 0 not occupied so use it
|
pick_way = 4'b0001;
|
pick_way = 4'b0001;
|
else if ( valid_bits[1] == 1'd0 )
|
else if ( valid_bits[1] == 1'd0 )
|
// way 1 not occupied so use it
|
// way 1 not occupied so use it
|
pick_way = 4'b0010;
|
pick_way = 4'b0010;
|
else if ( valid_bits[2] == 1'd0 )
|
else if ( valid_bits[2] == 1'd0 )
|
// way 2 not occupied so use it
|
// way 2 not occupied so use it
|
pick_way = 4'b0100;
|
pick_way = 4'b0100;
|
else if ( valid_bits[3] == 1'd0 )
|
else if ( valid_bits[3] == 1'd0 )
|
// way 3 not occupied so use it
|
// way 3 not occupied so use it
|
pick_way = 4'b1000;
|
pick_way = 4'b1000;
|
else
|
else
|
begin
|
begin
|
// All ways occupied so pick one randomly
|
// All ways occupied so pick one randomly
|
case (random_num[3:1])
|
case (random_num[3:1])
|
3'd0, 3'd1: pick_way = 4'b0100;
|
3'd0, 3'd1: pick_way = 4'b0100;
|
3'd2, 3'd3: pick_way = 4'b1000;
|
3'd2, 3'd3: pick_way = 4'b1000;
|
3'd4, 3'd5: pick_way = 4'b0001;
|
3'd4, 3'd5: pick_way = 4'b0001;
|
default: pick_way = 4'b0010;
|
default: pick_way = 4'b0010;
|
endcase
|
endcase
|
end
|
end
|
end
|
end
|
endfunction
|
endfunction
|
|
|
end
|
end
|
else begin : pick_way_8ways
|
else begin : pick_way_8ways
|
|
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
assign next_way = pick_way ( valid_bits_r, random_num );
|
|
|
function [WAYS-1:0] pick_way;
|
function [WAYS-1:0] pick_way;
|
input [WAYS-1:0] valid_bits;
|
input [WAYS-1:0] valid_bits;
|
input [3:0] random_num;
|
input [3:0] random_num;
|
begin
|
begin
|
if ( valid_bits[0] == 1'd0 )
|
if ( valid_bits[0] == 1'd0 )
|
// way 0 not occupied so use it
|
// way 0 not occupied so use it
|
pick_way = 8'b00000001;
|
pick_way = 8'b00000001;
|
else if ( valid_bits[1] == 1'd0 )
|
else if ( valid_bits[1] == 1'd0 )
|
// way 1 not occupied so use it
|
// way 1 not occupied so use it
|
pick_way = 8'b00000010;
|
pick_way = 8'b00000010;
|
else if ( valid_bits[2] == 1'd0 )
|
else if ( valid_bits[2] == 1'd0 )
|
// way 2 not occupied so use it
|
// way 2 not occupied so use it
|
pick_way = 8'b00000100;
|
pick_way = 8'b00000100;
|
else if ( valid_bits[3] == 1'd0 )
|
else if ( valid_bits[3] == 1'd0 )
|
// way 3 not occupied so use it
|
// way 3 not occupied so use it
|
pick_way = 8'b00001000;
|
pick_way = 8'b00001000;
|
else if ( valid_bits[4] == 1'd0 )
|
else if ( valid_bits[4] == 1'd0 )
|
// way 3 not occupied so use it
|
// way 3 not occupied so use it
|
pick_way = 8'b00010000;
|
pick_way = 8'b00010000;
|
else if ( valid_bits[5] == 1'd0 )
|
else if ( valid_bits[5] == 1'd0 )
|
// way 3 not occupied so use it
|
// way 3 not occupied so use it
|
pick_way = 8'b00100000;
|
pick_way = 8'b00100000;
|
else if ( valid_bits[6] == 1'd0 )
|
else if ( valid_bits[6] == 1'd0 )
|
// way 3 not occupied so use it
|
// way 3 not occupied so use it
|
pick_way = 8'b01000000;
|
pick_way = 8'b01000000;
|
else if ( valid_bits[7] == 1'd0 )
|
else if ( valid_bits[7] == 1'd0 )
|
// way 3 not occupied so use it
|
// way 3 not occupied so use it
|
pick_way = 8'b10000000;
|
pick_way = 8'b10000000;
|
else
|
else
|
begin
|
begin
|
// All ways occupied so pick one randomly
|
// All ways occupied so pick one randomly
|
case (random_num[3:1])
|
case (random_num[3:1])
|
3'd0: pick_way = 8'b00010000;
|
3'd0: pick_way = 8'b00010000;
|
3'd1: pick_way = 8'b00100000;
|
3'd1: pick_way = 8'b00100000;
|
3'd2: pick_way = 8'b01000000;
|
3'd2: pick_way = 8'b01000000;
|
3'd3: pick_way = 8'b10000000;
|
3'd3: pick_way = 8'b10000000;
|
3'd4: pick_way = 8'b00000001;
|
3'd4: pick_way = 8'b00000001;
|
3'd5: pick_way = 8'b00000010;
|
3'd5: pick_way = 8'b00000010;
|
3'd6: pick_way = 8'b00000100;
|
3'd6: pick_way = 8'b00000100;
|
default: pick_way = 8'b00001000;
|
default: pick_way = 8'b00001000;
|
endcase
|
endcase
|
end
|
end
|
end
|
end
|
endfunction
|
endfunction
|
|
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
|
|
// ========================================================
|
// ========================================================
|
// Debug WB bus - not synthesizable
|
// Debug WB bus - not synthesizable
|
// ========================================================
|
// ========================================================
|
//synopsys translate_off
|
//synopsys translate_off
|
wire [(6*8)-1:0] xSOURCE_SEL;
|
wire [(6*8)-1:0] xSOURCE_SEL;
|
wire [(22*8)-1:0] xC_STATE;
|
wire [(22*8)-1:0] xC_STATE;
|
|
|
assign xSOURCE_SEL = source_sel[C_CORE] ? "C_CORE" :
|
assign xSOURCE_SEL = source_sel[C_CORE] ? "C_CORE" :
|
source_sel[C_INIT] ? "C_INIT" :
|
source_sel[C_INIT] ? "C_INIT" :
|
source_sel[C_FILL] ? "C_FILL" :
|
source_sel[C_FILL] ? "C_FILL" :
|
source_sel[C_INVA] ? "C_INVA" :
|
source_sel[C_INVA] ? "C_INVA" :
|
"UNKNON" ;
|
"UNKNON" ;
|
|
|
assign xC_STATE = c_state == CS_INIT ? "INIT" :
|
assign xC_STATE = c_state == CS_INIT ? "INIT" :
|
c_state == CS_IDLE ? "IDLE" :
|
c_state == CS_IDLE ? "IDLE" :
|
c_state == CS_FILL ? "FILL" :
|
c_state == CS_FILL ? "FILL" :
|
c_state == CS_FILL_COMPLETE ? "FILL_COMPLETE" :
|
c_state == CS_FILL_COMPLETE ? "FILL_COMPLETE" :
|
c_state == CS_EX_DELETE ? "EX_DELETE" :
|
c_state == CS_EX_DELETE ? "EX_DELETE" :
|
c_state == CS_TURN_AROUND ? "TURN_AROUND" :
|
c_state == CS_TURN_AROUND ? "TURN_AROUND" :
|
c_state == CS_WRITE_HIT ? "WRITE_HIT" :
|
c_state == CS_WRITE_HIT ? "WRITE_HIT" :
|
c_state == CS_WRITE_HIT_WAIT_WB ? "WRITE_HIT_WAIT_WB" :
|
c_state == CS_WRITE_HIT_WAIT_WB ? "WRITE_HIT_WAIT_WB" :
|
c_state == CS_WRITE_MISS_WAIT_WB ? "WRITE_MISS_WAIT_WB" :
|
c_state == CS_WRITE_MISS_WAIT_WB ? "WRITE_MISS_WAIT_WB" :
|
"UNKNOWN" ;
|
"UNKNOWN" ;
|
|
|
|
|
generate
|
generate
|
if ( WAYS == 2 ) begin : check_hit_2ways
|
if ( WAYS == 2 ) begin : check_hit_2ways
|
|
|
always @( posedge i_clk )
|
always @( posedge i_clk )
|
if ( (data_hit_way[0] + data_hit_way[1] ) > 4'd1 )
|
if ( (data_hit_way[0] + data_hit_way[1] ) > 4'd1 )
|
begin
|
begin
|
`TB_ERROR_MESSAGE
|
`TB_ERROR_MESSAGE
|
$display("Hit in more than one cache ways!");
|
$display("Hit in more than one cache ways!");
|
end
|
end
|
|
|
end
|
end
|
else if ( WAYS == 3 ) begin : check_hit_3ways
|
else if ( WAYS == 3 ) begin : check_hit_3ways
|
|
|
always @( posedge i_clk )
|
always @( posedge i_clk )
|
if ( (data_hit_way[0] + data_hit_way[1] + data_hit_way[2] ) > 4'd1 )
|
if ( (data_hit_way[0] + data_hit_way[1] + data_hit_way[2] ) > 4'd1 )
|
begin
|
begin
|
`TB_ERROR_MESSAGE
|
`TB_ERROR_MESSAGE
|
$display("Hit in more than one cache ways!");
|
$display("Hit in more than one cache ways!");
|
end
|
end
|
|
|
end
|
end
|
else if ( WAYS == 4 ) begin : check_hit_4ways
|
else if ( WAYS == 4 ) begin : check_hit_4ways
|
|
|
always @( posedge i_clk )
|
always @( posedge i_clk )
|
if ( (data_hit_way[0] + data_hit_way[1] +
|
if ( (data_hit_way[0] + data_hit_way[1] +
|
data_hit_way[2] + data_hit_way[3] ) > 4'd1 )
|
data_hit_way[2] + data_hit_way[3] ) > 4'd1 )
|
begin
|
begin
|
`TB_ERROR_MESSAGE
|
`TB_ERROR_MESSAGE
|
$display("Hit in more than one cache ways!");
|
$display("Hit in more than one cache ways!");
|
end
|
end
|
|
|
end
|
end
|
else if ( WAYS == 8 ) begin : check_hit_8ways
|
else if ( WAYS == 8 ) begin : check_hit_8ways
|
|
|
always @( posedge i_clk )
|
always @( posedge i_clk )
|
if ( (data_hit_way[0] + data_hit_way[1] +
|
if ( (data_hit_way[0] + data_hit_way[1] +
|
data_hit_way[2] + data_hit_way[3] +
|
data_hit_way[2] + data_hit_way[3] +
|
data_hit_way[4] + data_hit_way[5] +
|
data_hit_way[4] + data_hit_way[5] +
|
data_hit_way[6] + data_hit_way[7] ) > 4'd1 )
|
data_hit_way[6] + data_hit_way[7] ) > 4'd1 )
|
begin
|
begin
|
`TB_ERROR_MESSAGE
|
`TB_ERROR_MESSAGE
|
$display("Hit in more than one cache ways!");
|
$display("Hit in more than one cache ways!");
|
end
|
end
|
|
|
end
|
end
|
else begin : check_hit_nways
|
else begin : check_hit_nways
|
|
|
initial
|
initial
|
begin
|
begin
|
`TB_ERROR_MESSAGE
|
`TB_ERROR_MESSAGE
|
$display("Unsupported number of ways %0d", WAYS);
|
$display("Unsupported number of ways %0d", WAYS);
|
$display("Set A25_DCACHE_WAYS in a25_config_defines.v to either 2,3,4 or 8");
|
$display("Set A25_DCACHE_WAYS in a25_config_defines.v to either 2,3,4 or 8");
|
end
|
end
|
|
|
end
|
end
|
endgenerate
|
endgenerate
|
|
|
|
|
//synopsys translate_on
|
//synopsys translate_on
|
|
|
endmodule
|
endmodule
|
|
|
|
|