URL
https://opencores.org/ocsvn/aes-128_pipelined_encryption/aes-128_pipelined_encryption/trunk
Subversion Repositories aes-128_pipelined_encryption
[/] [aes-128_pipelined_encryption/] [trunk/] [rtl/] [RoundKeyGen.v] - Rev 2
Compare with Previous | Blame | View Log
/* Project : AES Standard doc. : FIPS 197 Module name : RoundKeyGen block Dependancy : Design doc. : References : Description : This module is used to perform the process of round key generation from input key this module is the basic block of key expantion module Owner : Amr Salah */ `timescale 1 ns/1 ps module RoundKeyGen # ( parameter KEY_L = 128, //key length parameter WORD = 32 //a parameter to represent WORD = 4 bytes = 32 bit ) ( input clk, //system clk input reset, //asynch active low reset input [WORD-1:0] RCON_Word, //round constant word input valid_in, //input valid signal input [KEY_L-1:0] key, //input key output reg [KEY_L-1:0]round_key, //round key output reg valid_out //output valid signal ); wire [WORD-1:0] Key_RotWord; reg [KEY_L-1:0] Key_FirstStage; reg [KEY_L-1:0] Key_SecondStage; reg [KEY_L-1:0] round_key_delayed; reg valid_FirstStage; reg valid_round_key; wire [WORD-1:0] Key_SubBytes; wire subbytes_valid_out; wire [KEY_L-1:0] temp_round_key; //The keygeneration stages should be balanced with the 4 round stages(SubBytes-ShiftRows-MixColumns-AddRoundKey) //in order to let the round key and the data meet at the same time in the AddRoundKey module /******************************************First Stage Register***********************************************************/ always @(posedge clk or negedge reset) if(!reset)begin valid_FirstStage <= 1'b0; Key_FirstStage <= 'b0; end else begin if(valid_in)begin Key_FirstStage <= key; end valid_FirstStage <= valid_in; end /***********************************************Second Stage Register*******************************************************/ always @(posedge clk or negedge reset) if(!reset)begin Key_SecondStage <= 'b0; end else begin if(valid_FirstStage)begin Key_SecondStage <= Key_FirstStage; end end /*******************************************************RotWord****************************************************************/ assign Key_RotWord = {Key_FirstStage[WORD-9:0],Key_FirstStage[WORD-1:WORD-8]}; //rotation of the least word in key /**************************************************SubBytes (Parallel to second stage register)*******************************/ //perform subbytes operation on the result word of rotword step SubBytes #(WORD) SUB_U (clk,reset,valid_FirstStage,Key_RotWord,subbytes_valid_out,Key_SubBytes); /***************************************************Round Key calculations ***********************************************/ assign temp_round_key[4*WORD-1:3*WORD] = Key_SecondStage[4*WORD-1:3*WORD] ^ Key_SubBytes ^ RCON_Word; assign temp_round_key[3*WORD-1:2*WORD] = Key_SecondStage[3*WORD-1:2*WORD] ^ temp_round_key[4*WORD-1:3*WORD] ; assign temp_round_key[2*WORD-1:WORD] = Key_SecondStage[2*WORD-1:WORD] ^ temp_round_key[3*WORD-1:2*WORD]; assign temp_round_key[WORD-1:0] = Key_SecondStage[WORD-1:0] ^ temp_round_key[2*WORD-1:WORD]; /***************************************************Roundkey Register (Third Stage)******************************************/ always @(posedge clk or negedge reset) if(!reset)begin round_key_delayed <= 'b0; valid_round_key <= 1'b0; end else begin if(subbytes_valid_out)begin round_key_delayed <= temp_round_key; end valid_round_key <= subbytes_valid_out; end /****************************************Out Put Register (Fourth Stage)*********************************************/ always @(posedge clk or negedge reset) if(!reset)begin valid_out <= 1'b0; round_key <= 'b0; end else begin if(valid_round_key)begin round_key <= round_key_delayed; end valid_out <= valid_round_key; end endmodule