
[image:]

AES Behavioral Model
Specification

Author: scheng
schengopencores@opencores.org

Rev. 0.2
August 12, 2013

[image:] OpenCores	Specifications Template	8/12/2013

www.opencores.org	Rev 0.8 Preliminary	ii

This page has been intentionally left blank.

Revision History
	Rev.
	Date
	Author
	Description

	0.1
	07/04/2013
	scheng
	Initial release. Decryption only.

	0.2
	08/12/2013
	scheng
	Added support for encryption.
Typedefs for decryption unchanged. Three new typedefs added for encryption.
Additional testbench and test vectors for encryption included.

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Contents
Introduction	1
Usage	2
Class properties and methods	4
properties	4
methods	5
examples	8
Example1 - verification of an aes decryption ip	8
example 2 - verification of per cycle (round) output of an aes IP	10
verification	14
references	15

[image:] OpenCores	AES Behavioral Model	8/12/2013

[bookmark: _Toc513532494]www.opencores.org	Rev 0.2 Preliminary	iv

[bookmark: Introduction][bookmark: _Toc518887500]Introduction
The AES behavioral model is an un-timed SystemVerilog class which implements the encryption and decryption algorithm described in the FIPS-197 specification. The objective is to provide a tool to facilitate the verification of AES IPs developed in HDL. The model can be used as a golden model or test vector generator in HDL simulation of AES designs. It provides a quick and easy way to output known good values (plaintext / ciphertext) to be compared with the output of the unit under test (uut). Unlike other reference models written in C/C++, this model is implemented purely in SystemVerilog and can be instantiated directly in the testbench, eliminating the need to interface with an external language in an HDL simulation environment. The model is an un-timed SystemVeriog class with no timing information hard-coded. This allows the flexibility to further enclose the model in a wrapper with timing details to form a timed AES behavioral model to cope with various simulation scenarios.

Highlights
· Implements AES encryption and decryption algorithm defined in FIPS-197
· Supports 128/192/256 bit key length
· Native SystemVerilog class eliminates the need to interface with external language in HDL testbench
· Runtime selectable single-round mode to generate per round intermediate result or run-through mode to generate the final ciphertext/plaintext directly
· Verified against selected test vectors provided in FIPS-197, SP800-38a, and AESAVS. Testbench provided.

Usage
The following pre-defined data types are provided for use in the testbench, each represents a SystemVerilog class of the corresponding key length
	Encryption
	Decryption

	aes128_encrypt_t
	aes128_decrypt_t

	aes192_encrypt_t
	aes192_decrypt_t

	aes256_encrypt_t
	aes256_decrypt_t

To use the model in your testbench, declare a variable of the appropriate type and run the constructor, as shown in the example below
module my_testbench;
....
	aes128_decrypt_t my_decryptor; // Declare class variable

	initial begin
		my_decryptor = new; // Run constructor

Example calling sequences for use in testbench are shown below.

Example for 256-bit decryption, run-through mode.
aes256_decrypt_t	my_aes_decryptor;		// Class variable for 256-bit decryptor
bit [0:127] 	pt;			// Plaintext
	
my_aes_decryptor = new;			// Create a decryptor instance
my_aes_decryptor.KeyExpand(256'h.......);	// Load 256-bit crypto key to model
my_aes_decryptor.LoadCt(128'h.........);	// Load ciphertext
my_aes_descryptor.run(0);			// Run through all decryption round
pt = my_aes_descryptor.GetState();		// Get plaintext
…..

Example for 128-bit encryption, single-round mode.
aes128_encrypt_t	 my_aes_encryptor;	// Class variable for 128-bit encryptor
bit [0:127] 	 ct;			// Ciphertext
	
my_aes_encryptor = new;			// Create a encryptor instance
my_aes_encryptor.KeyExpand(128'h.......);	// Load 128-bit crypto key to model
my_aes_encryptor.LoadPt(128'h.........);		// Load plaintext
do
begin
my_aes_encryptor.run(1);		// Run one round only
$display(“State=%h”,my_aes_encryptor.GetState());	// Print per-round result
end
while (my_aes_encryptor.done == 0);
ct = my_aes_encryptor.GetState();		// Get ciphertext
….

[bookmark: Clocks]Class Properties and Methods
Inside the model the State, Key Schedule, and round counter are maintained as protected properties which can be accessed through dedicated methods. Other properties like the done and loaded flags are exposed to the outside world and can be accessed directly. By calling the exposed methods the model can be driven to generate known good results at different point during simulation for verification of the uut.

Properties
	Name
	done

	Declaration
	bit done

	Description
	Done flag indicated the end of decryption. Initialized to ‘0’ in new(), LoadCt() and LoadPt(). Set to ‘1’ in run() after the last round is completed. When done=’1’, state contains valid plaintext. Testbench codes can check this flag to determine if the last round is completed.

	Name
	loaded

	Declaration
	bit loaded

	Description
	Flag indicates whether a valid ciphertext is loaded to the model. Initialized to ‘0’ by new(). Set to ‘1’ when LoadCt() or LoadPt() is called. Reset to ‘0’ by run() when the last round is finished. Testbench codes can check this flag to determine if the model is loaded with a valid ciphertext or plaintext.

Methods
	Name
	LoadCt()

	Declaration
	task LoadCt(bit [0:127] ct)

	Properties modified
	state, loaded, done

	Return value
	None

	Description
	For decryption model only. Load valid ciphertext to state. ct is a 128-bit vector holding the ciphertext, with 1st byte in ct[0:7], 2nd byte in ct[8:15], …and so on. Make sure LoadCt() is called before calling run() to ensure run() doesn’t work on garbage. LoadCt() sets loaded to ‘1’ and clears done to ‘0’.

	Name
	LoadPt()

	Declaration
	task LoadPt(bit [0:127] pt)

	Properties modified
	state, loaded, done

	Return value
	None

	Description
	For encryption model only. Load valid plainrtext to state. pt is a 128-bit vector holding the plaintext, with 1st byte in pt[0:7], 2nd byte in pt[8:15], …and so on. Make sure LoadPt() is called before calling run() to ensure run() doesn’t work on garbage. LoadPt() sets loaded to ‘1’ and clears done to ‘0’.

	Name
	GetState()

	Declaration
	function bit [0:127] GetState

	Properties modified
	None

	Return value
	Current state content in a 128-bit vector.
For encryption model, State holds the final ciphertext at the last round.
For decryption model, State holds the final plaintext at the last round.

	Description
	Returns current State as a 128-bit vector. State[0][0] in bit[0:7], State[1][0] in bit [8:15],. ..., and so on. For encryption call GetState() to obtain the ciphertext at the last round. For decryption call GetState() to obtain the plaintext at the last round. GetState() can be called at any time.

	Name
	KeyExpand

	Declaration
	task KeyExpand(bit [0:4*8*Nk-1] key)

	Properties modified
	keysch

	Return value
	None

	Description
	Load crypto key to model and compute Key Schedule. KeyExpand() should be called before calling run() to make sure that a valid Key Schedule is available for run() to use during encryption/decryption. Once KeyExpand() is completed, a valid Key Schedule is stored in the property keysch and stays there until KeyExpand() is invoked again. Therefore a single Key Schedule can be used in multiple encryption/decryption runs if there is no change of crypto key.

	Name
	GetCurrKsch

	Declaration
	function bit [0:127] GetCurrKsch

	Properties modified
	None

	Return value
	Key Schedule for the current round

	Description
	Returns the Key Schedule for the current round. . A protected property curr_round keeps track of which round the encryption/decryption process is in. More precisely, curr_round holds the round that will be executed next time run() is called. So the round key returned by GetCurrKsch() is the one that will be used in next call of run().

	Name
	LookupKsch

	Declaration
	function bit [0:127] LookupKsch(int unsigned r);

	Properties modified
	None

	Return value
	Key Schedule for the specified round

	Description
	Returns the Key Schedule for round specified by r.

	Name
	GetCurrRound

	Declaration
	function int unsigned GetCurrRound

	Properties modified
	None

	Return value
	Unsigned integer indicating the current round

	Description
	Call GetCurrRound() to find out the round number which will be executed next time run() is called. This method is provided for use with single-round mode (see description on run() below) so that the testbench codes can monitor the progress of the encryption/decryption and tell exactly which round the model Is in.

	Name
	run

	Declaration
	task run(int mode)

	Properties modified
	state, loaded, done, curr_round (protected)

	Return value
	None

	Description
	Run the encryption/decryption process. Mode=0 for run-through mode, mode=1 for single-round mode. In run-through mode run() runs from the current round all the way to the last round. In single-round mode run() runs one round and returns. Single round mode is for scenarios where intermediate result for each round is needed, e.g. to verify the State of the uut at each clock cycle. Before calling run(), make sure the model is loaded with either LoadPt() or LoadCt() and KeyExpand().

Examples
Example 1 - Verification of an AES128 decryption IP
This example shows a sample SystemVerilog testbench for verification of an AES decryption IP (uut). The uut output is compared against the reference model output. In this example we don’t care about the intermediate results, so the model is run with run-through mode to get the plaintext right away.
`timescale 1ns/1ps

// Source code for our reference model
`include "aes_beh_model.sv"
// Source code of the AES IP to be verified
`include "aes128_dec.sv"

module aes128_dec_tb;

	logic	[0:127]	ct;	// Ciphertext input to uut
	logic	ct_vld;		// High indicates valid ciphertext present
	wire	ct_rdy;		// High indicates uut ready to accept new ciphertext

	logic	[0:127]	kt;	// Key text input to uut
	logic	kt_vld;		// High indicates valid key text present
	wire	kt_rdy;		// High indicates uut ready to accept new key text
	
	wire	[0:127]	pt;	// Plaintext output from uut
	wire	pt_vld;		// High indicates valid plaintext present from uut
	
	logic	clk;		// System clock
	logic	rst;		// Active high reset

	`define PERIOD 10
	`define T (`PERIOD/2)
	`define Tcko 1
	
	`define WAIT_N_CLK(num_of_clk) repeat(num_of_clk) @(posedge clk); #(`Tcko)
	
	// Declare a variable for our reference model. Output from the uut
	// will be verified against this reference model.
	aes128_decrypt_t ref_model;
	
	// Instantiate decryptor IP
	aes128_dec uut(.clk(clk),
			.rst(rst),
				
			.ct(ct),			// Ciphertext
			.ct_vld(ct_vld),
			.ct_rdy(ct_rdy),
				
			.kt(kt),			// Key text
			.kt_vld(kt_vld),
			.kt_rdy(kt_rdy),
					
			.pt(pt),			// Plaintext
			.pt_vld(pt_vld)
);
	// Task for loading key text to uut
	task set_kt(input [0:127] x);
		wait (kt_rdy);
		kt = x;
		kt_vld = 1;
		`WAIT_N_CLK(1);
		kt_vld = 0;
		`WAIT_N_CLK(1);
	endtask
	
	// Task for loading ciphertext to uut
	task set_ct(input [0:127] x);
		wait (ct_rdy);
		ct = x;
		ct_vld = 1;
		`WAIT_N_CLK(1);
		ct_vld = 0;
		`WAIT_N_CLK(1);
	endtask
	
	// Clock generator
	always
	begin
		clk <= 1;
		#(`T);
		clk <= 0;
		#(`T);
	end
	
	initial begin
		// Create an instance of the reference model
		ref_model = new;

		// Initialize signals
		rst = 1;
		kt_vld = 0;
		ct_vld = 0;
		`WAIT_N_CLK(3);
		
		// Deactivate reset
		rst = 0;
		`WAIT_N_CLK(1);

		// Load key text to model
		ref_model.KeyExpand(128'h000102030405060708090a0b0c0d0e0f);
		// Load ciphertext to model
		ref_model.LoadCt(128'h69c4e0d86a7b0430d8cdb78070b4c55a);
		
		// Write key text to uut
		set_kt(128'h000102030405060708090a0b0c0d0e0f);
		// Write ciphertext to uut
		set_ct(128'h69c4e0d86a7b0430d8cdb78070b4c55a);
		// Wait until plaintext is available from uut
		wait (pt_vld);
		// Execute reference model to obtain known good result
		ref_model.run(0);
		
		// Print uut and model output
		$display("pt=%h expected=%h",pt,ref_model.GetState());
		// Verify uut output against model output
		if (pt != ref_model.GetState()) $display("***Mismatch");

		$stop;
	end
endmodule

Example 2 - Verification of per cycle (round) output of an AES IP
This example demonstrates the use of single-round mode of the model. Here the output of the uut (which is the State) is verified against the reference model out on a per cycle basis. The model is driven with single-round mode so that run() return after finishing every round. In the following testbench run() is called at every clock cycle to obtain the value of the State after each round, which is then compared against the uut output.

There are two initial blocks in this testbench. The first one is a stimuli generator which feeds ciphertext and crypto key to the uut. The second one is a checker process which verifies the uut output against the reference model for every clock cycle.

`timescale 1ns/1ps
// Source code for our reference model
`include "aes_beh_model.sv"
// Source code of the AES IP to be verified
`include "aes128_dec.sv"

module aes128_dec_tb;

	logic	[0:127]	ct;
	logic	ct_vld;
	wire	ct_rdy;

	logic	[0:127]	kt;
	logic	kt_vld;
	wire	kt_rdy;
	
	wire	[0:127]	pt;
	wire	pt_vld;
	
	logic	clk;
	logic	rst;

	logic	[0:127]	round_key;

	`define PERIOD 10
	`define T (`PERIOD/2)
	`define Tcko 1
	
	`define WAIT_N_CLK(num_of_clk) repeat(num_of_clk) @(posedge clk); #(`Tcko)
	
	// Declare a variable for the 128 bit decryptor model. Output from the uut
	// will be verified against this reference model.
	aes128_decrypt_t ref_model;
	
	// Instantiate decryptor IP
	aes128_dec uut(.clk(clk),
			.rst(rst),
				
			.ct(ct),			// Ciphertext
			.ct_vld(ct_vld),
			.ct_rdy(ct_rdy),
					
			.kt(kt),			// Key text
			.kt_vld(kt_vld),
			.kt_rdy(kt_rdy),
					
			.pt(pt),			// Plaintext
			.pt_vld(pt_vld)
);
	
	// Task for loading key text to uut
	task set_kt(input [0:127] x);
		wait (kt_rdy);
		kt = x;
		kt_vld = 1;
		`WAIT_N_CLK(1);
		kt_vld = 0;
		`WAIT_N_CLK(1);
	endtask
	
	// Task for loading ciphertext to uut
	task set_ct(input [0:127] x);
		wait (ct_rdy);
		ct = x;
		ct_vld = 1;
		`WAIT_N_CLK(1);
		ct_vld = 0;
		`WAIT_N_CLK(1);
	endtask
	
	// Clock generator
	always
	begin
		clk <= 1;
		#(`T);
		clk <= 0;
		#(`T);
	end
	
	// This initial block applies stimuli to the uut
	initial begin
		// Initialize signals
		rst = 1;
		kt_vld = 0;
		ct_vld = 0;
		`WAIT_N_CLK(3);
		
		// Deactivate reset
		rst = 0;
		`WAIT_N_CLK(1);

		// Write key text to uut
		set_kt(128'h000102030405060708090a0b0c0d0e0f);
		// Write ciphertext to uut. Decryption process starts immediately
		// once ciphertext is loaded to uut.
		set_ct(128'h69c4e0d86a7b0430d8cdb78070b4c55a);
			
		// All stimuli have been applied at this point
	end

	// This initial block is a checker process which monitors the uut output at each
	// clock cycle and verify against the reference model.
	initial begin
		// Create an instance of the reference model
		ref_model = new;
		
		// Wait for testbench to write key text to uut
		wait (kt_vld);
		// Load same key text to reference model
		ref_model.KeyExpand(kt);
		
		// Wait for testbench to write ciphertext to uut
		wait (ct_vld)
		// Load same ciphertext to reference model
		ref_model.LoadCt(ct);
		
		// uut executes one decryption round per clock cycle. pt contains the State after each
		// round. pt is compared against the reference model output after each clock cycle.
		do begin				
			`WAIT_N_CLK(1);
			// Get round key for the current round. After ref_model.run() is called the internal
			// round counter will be updated and points to next round.
			round_key = ref_model.GetCurrKsch();
			ref_model.run(1);	// Run reference model for a single round
			
			// Print uut and model output
$display("round key=%h State=%h expected=%h", round_key,pt, ref_model.GetState());
			// Compare uut output with reference model
			if (pt != ref_model.GetState()) $display("***Mismatch");
		end
		while (~pt_vld);	// Repeat until uut finished all decryption rounds
		
		// Print plaintext from uut and refence model
		$display("pt=%h expected=%h",pt,ref_model.GetState());
		
// Verify uut output against model output
		if (pt != ref_model.GetState()) $display("***Mismatch");

		$stop;
	end
endmodule

Verification
This model has been verified with the following test vector sets
· FIPS-197, Appendix C
· NIST Special Publication 800-38A 2001 Edition (SP800-38a), Appendix F.1.1-1.6
· The Advanced Encryption Standard Algorithm Validation Suite (AESAVS), Appendix B, C, D, E
[bookmark: _GoBack]Two sample testbenches, one for encryption and the other for decryption, are provided the bench/ directory. Modelsim do scripts are included in the sim/ directory.

References
1. Advanced Encryption Standard (AES) (FIPS PUB 197)
2. NIST Special Publication 800-38A 2001 Edition
3. The Advanced Encryption Standard Algorithm Validation Suite (AESAVS)

[bookmark: _Toc514386859]www.opencores.org	Rev 0.2 Preliminary	13 of 15
image1.jpeg

image2.wmf

