URL
https://opencores.org/ocsvn/ps2/ps2/trunk
Subversion Repositories ps2
[/] [ps2/] [tags/] [rel_13/] [rtl/] [verilog/] [ps2_keyboard.v] - Rev 51
Compare with Previous | Blame | View Log
//------------------------------------------------------------------------------------- // // Author: John Clayton // Date : April 30, 2001 // Update: 4/30/01 copied this file from lcd_2.v (pared down). // Update: 5/24/01 changed the first module from "ps2_keyboard_receiver" // to "ps2_keyboard_interface" // Update: 5/29/01 Added input synchronizing flip-flops. Changed state // encoding (m1) for good operation after part config. // Update: 5/31/01 Added low drive strength and slow transitions to ps2_clk // and ps2_data in the constraints file. Added the signal // "tx_shifting_done" as distinguished from "rx_shifting_done." // Debugged the transmitter portion in the lab. // Update: 6/01/01 Added horizontal tab to the ascii output. // Update: 6/01/01 Added parameter TRAP_SHIFT_KEYS. // Update: 6/05/01 Debugged the "debounce" timer functionality. // Used 60usec timer as a "watchdog" timeout during // receive from the keyboard. This means that a keyboard // can now be "hot plugged" into the interface, without // messing up the bit_count, since the bit_count is reset // to zero during periods of inactivity anyway. This was // difficult to debug. I ended up using the logic analyzer, // and had to scratch my head quite a bit. // Update: 6/06/01 Removed extra comments before the input synchronizing // flip-flops. Used the correct parameter to size the // 5usec_timer_count. Changed the name of this file from // ps2.v to ps2_keyboard.v // Update: 6/06/01 Removed "&& q[7:0]" in output_strobe logic. Removed extra // commented out "else" condition in the shift register and // bit counter. // Update: 6/07/01 Changed default values for 60usec timer parameters so that // they correspond to 60usec for a 49.152MHz clock. // // // // // // Description //------------------------------------------------------------------------------------- // This is a state-machine driven serial-to-parallel and parallel-to-serial // interface to the ps2 style keyboard interface. The details of the operation // of the keyboard interface were obtained from the following website: // // http://www.beyondlogic.org/keyboard/keybrd.htm // // Some aspects of the keyboard interface are not implemented (e.g, parity // checking for the receive side, and recognition of the various commands // which the keyboard sends out, such as "power on selt test passed," "Error" // and "Resend.") However, if the user wishes to recognize these reply // messages, the scan code output can always be used to extend functionality // as desired. // // Note that the "Extended" (0xE0) and "Released" (0xF0) codes are recognized. // The rx interface provides separate indicator flags for these two conditions // with every valid character scan code which it provides. The shift keys are // also trapped by the interface, in order to provide correct uppercase ASCII // characters at the ascii output, although the scan codes for the shift keys // are still provided at the scan code output. So, the left/right ALT keys // can be differentiated by the presence of the rx_entended signal, while the // left/right shift keys are differentiable by the different scan codes // received. // // The interface to the ps2 keyboard uses ps2_clk clock rates of // 30-40 kHz, dependent upon the keyboard itself. The rate at which the state // machine runs should be at least twice the rate of the ps2_clk, so that the // states can accurately follow the clock signal itself. Four times // oversampling is better. Say 200kHz at least. The upper limit for clocking // the state machine will undoubtedly be determined by delays in the logic // which decodes the scan codes into ASCII equivalents. The maximum speed // will be most likely many megahertz, depending upon target technology. // In order to run the state machine extremely fast, synchronizing flip-flops // have been added to the ps2_clk and ps2_data inputs of the state machine. // This avoids poor performance related to slow transitions of the inputs. // // Because this is a bi-directional interface, while reading from the keyboard // the ps2_clk and ps2_data lines are used as inputs. While writing to the // keyboard, however (which may be done at any time. If writing interrupts a // read from the keyboard, the keyboard will buffer up its data, and send // it later) both the ps2_clk and ps2_data lines are occasionally pulled low, // and pullup resistors are used to bring the lines high again, by setting // the drivers to high impedance state. // // The tx interface, for writing to the keyboard, does not provide any special // pre-processing. It simply transmits the 8-bit command value to the // keyboard. // // Pullups MUST BE USED on the ps2_clk and ps2_data lines for this design, // whether they be internal to an FPGA I/O pad, or externally placed. // If internal pullups are used, they may be fairly weak, causing bounces // due to crosstalk, etc. There is a "debounce timer" implemented in order // to eliminate erroneous state transitions which would occur based on bounce. // // Parameters are provided in order to configure and appropriately size the // counter of a 60 microsecond timer used in the transmitter, depending on // the clock frequency used. The 60 microsecond period is guaranteed to be // more than one period of the ps2_clk_s signal. // // Also, a smaller 5 microsecond timer has been included for "debounce". // This is used because, with internal pullups on the ps2_clk and ps2_data // lines, there is some bouncing around which occurs // // A parameter TRAP_SHIFT_KEYS allows the user to eliminate shift keypresses // from producing scan codes (along with their "undefined" ASCII equivalents) // at the output of the interface. If TRAP_SHIFT_KEYS is non-zero, the shift // key status will only be reported by rx_shift_key_on. No ascii or scan // codes will be reported for the shift keys. This is useful for those who // wish to use the ASCII data stream, and who don't want to have to "filter // out" the shift key codes. // //------------------------------------------------------------------------------------- // synopsys translate_off `include "timescale.v" // synopsys translate_on `define TOTAL_BITS 11 `define RELEASE_CODE 16'hF0 module ps2_keyboard ( clk, reset, ps2_clk_en_o_, ps2_data_en_o_, ps2_clk_i, ps2_data_i, rx_released, rx_scan_code, rx_data_ready, // rx_read_o rx_read, // rx_read_ack_i tx_data, tx_write, tx_write_ack_o, tx_error_no_keyboard_ack, translate, devide_reg_i ); // Parameters // The timer value can be up to (2^bits) inclusive. parameter TIMER_60USEC_VALUE_PP = 2950; // Number of sys_clks for 60usec. parameter TIMER_60USEC_BITS_PP = 12; // Number of bits needed for timer parameter TIMER_5USEC_VALUE_PP = 186; // Number of sys_clks for debounce parameter TIMER_5USEC_BITS_PP = 8; // Number of bits needed for timer // State encodings, provided as parameters // for flexibility to the one instantiating the module. // In general, the default values need not be changed. // State "m1_rx_clk_l" has been chosen on purpose. Since the input // synchronizing flip-flops initially contain zero, it takes one clk // for them to update to reflect the actual (idle = high) status of // the I/O lines from the keyboard. Therefore, choosing 0 for m1_rx_clk_l // allows the state machine to transition to m1_rx_clk_h when the true // values of the input signals become present at the outputs of the // synchronizing flip-flops. This initial transition is harmless, and it // eliminates the need for a "reset" pulse before the interface can operate. parameter m1_rx_clk_h = 1; parameter m1_rx_clk_l = 0; parameter m1_rx_falling_edge_marker = 13; parameter m1_rx_rising_edge_marker = 14; parameter m1_tx_force_clk_l = 3; parameter m1_tx_first_wait_clk_h = 10; parameter m1_tx_first_wait_clk_l = 11; parameter m1_tx_reset_timer = 12; parameter m1_tx_wait_clk_h = 2; parameter m1_tx_clk_h = 4; parameter m1_tx_clk_l = 5; parameter m1_tx_wait_keyboard_ack = 6; parameter m1_tx_done_recovery = 7; parameter m1_tx_error_no_keyboard_ack = 8; parameter m1_tx_rising_edge_marker = 9; parameter m2_rx_data_ready = 1; parameter m2_rx_data_ready_ack = 0; // I/O declarations input clk; input reset; output ps2_clk_en_o_ ; output ps2_data_en_o_ ; input ps2_clk_i ; input ps2_data_i ; output rx_released; output [7:0] rx_scan_code; output rx_data_ready; input rx_read; input [7:0] tx_data; input tx_write; output tx_write_ack_o; output tx_error_no_keyboard_ack; input translate ; input [15:0] devide_reg_i; reg rx_released; reg [7:0] rx_scan_code; reg rx_data_ready; reg tx_error_no_keyboard_ack; // Internal signal declarations wire timer_60usec_done; wire timer_5usec_done; wire released; // NOTE: These two signals used to be one. They // were split into two signals because of // shift key trapping. With shift key // trapping, no event is generated externally, // but the "hold" data must still be cleared // anyway regardless, in preparation for the // next scan codes. wire rx_output_event; // Used only to clear: hold_released, hold_extended wire rx_output_strobe; // Used to produce the actual output. wire tx_parity_bit; wire rx_shifting_done; wire tx_shifting_done; reg [`TOTAL_BITS-1:0] q; reg [3:0] m1_state; reg [3:0] m1_next_state; reg m2_state; reg m2_next_state; reg [3:0] bit_count; reg enable_timer_60usec; reg enable_timer_5usec; reg [TIMER_60USEC_BITS_PP-1:0] timer_60usec_count; reg [TIMER_5USEC_BITS_PP-1:0] timer_5usec_count; reg hold_released; // Holds prior value, cleared at rx_output_strobe reg ps2_clk_s; // Synchronous version of this input reg ps2_data_s; // Synchronous version of this input reg ps2_clk_hi_z; // Without keyboard, high Z equals 1 due to pullups. reg ps2_data_hi_z; // Without keyboard, high Z equals 1 due to pullups. reg ps2_clk_ms; reg ps2_data_ms; reg [15:0] timer_5usec; reg timer_done; //-------------------------------------------------------------------------- // Module code assign ps2_clk_en_o_ = ps2_clk_hi_z ; assign ps2_data_en_o_ = ps2_data_hi_z ; // Input "synchronizing" logic -- synchronizes the inputs to the state // machine clock, thus avoiding errors related to // spurious state machine transitions. always @(posedge clk) begin ps2_clk_ms <= #1 ps2_clk_i; ps2_data_ms <= #1 ps2_data_i; ps2_clk_s <= #1 ps2_clk_ms; ps2_data_s <= #1 ps2_data_ms; end // State register always @(posedge clk or posedge reset) begin : m1_state_register if (reset) m1_state <= #1 m1_rx_clk_h; else m1_state <= #1 m1_next_state; end // State transition logic always @(m1_state or q or tx_shifting_done or tx_write or ps2_clk_s or ps2_data_s or timer_60usec_done or timer_5usec_done ) begin : m1_state_logic // Output signals default to this value, unless changed in a state condition. ps2_clk_hi_z <= #1 1; ps2_data_hi_z <= #1 1; tx_error_no_keyboard_ack <= #1 1'b0; enable_timer_60usec <= #1 0; enable_timer_5usec <= #1 0; case (m1_state) m1_rx_clk_h : begin enable_timer_60usec <= #1 1; if (tx_write) m1_next_state <= #1 m1_tx_reset_timer; else if (~ps2_clk_s) m1_next_state <= #1 m1_rx_falling_edge_marker; else m1_next_state <= #1 m1_rx_clk_h; end m1_rx_falling_edge_marker : begin enable_timer_60usec <= #1 0; m1_next_state <= #1 m1_rx_clk_l; end m1_rx_rising_edge_marker : begin enable_timer_60usec <= #1 0; m1_next_state <= #1 m1_rx_clk_h; end m1_rx_clk_l : begin enable_timer_60usec <= #1 1; if (tx_write) m1_next_state <= #1 m1_tx_reset_timer; else if (ps2_clk_s) m1_next_state <= #1 m1_rx_rising_edge_marker; else m1_next_state <= #1 m1_rx_clk_l; end m1_tx_reset_timer: begin enable_timer_60usec <= #1 0; m1_next_state <= #1 m1_tx_force_clk_l; end m1_tx_force_clk_l : begin enable_timer_60usec <= #1 1; ps2_clk_hi_z <= #1 0; // Force the ps2_clk line low. if (timer_60usec_done) m1_next_state <= #1 m1_tx_first_wait_clk_h; else m1_next_state <= #1 m1_tx_force_clk_l; end m1_tx_first_wait_clk_h : begin enable_timer_5usec <= #1 1; ps2_data_hi_z <= #1 0; // Start bit. if (~ps2_clk_s && timer_5usec_done) m1_next_state <= #1 m1_tx_clk_l; else m1_next_state <= #1 m1_tx_first_wait_clk_h; end // This state must be included because the device might possibly // delay for up to 10 milliseconds before beginning its clock pulses. // During that waiting time, we cannot drive the data (q[0]) because it // is possibly 1, which would cause the keyboard to abort its receive // and the expected clocks would then never be generated. m1_tx_first_wait_clk_l : begin ps2_data_hi_z <= #1 0; if (~ps2_clk_s) m1_next_state <= #1 m1_tx_clk_l; else m1_next_state <= #1 m1_tx_first_wait_clk_l; end m1_tx_wait_clk_h : begin enable_timer_5usec <= #1 1; ps2_data_hi_z <= #1 q[0]; if (ps2_clk_s && timer_5usec_done) m1_next_state <= #1 m1_tx_rising_edge_marker; else m1_next_state <= #1 m1_tx_wait_clk_h; end m1_tx_rising_edge_marker : begin ps2_data_hi_z <= #1 q[0]; m1_next_state <= #1 m1_tx_clk_h; end m1_tx_clk_h : begin ps2_data_hi_z <= #1 q[0]; if (tx_shifting_done) m1_next_state <= #1 m1_tx_wait_keyboard_ack; else if (~ps2_clk_s) m1_next_state <= #1 m1_tx_clk_l; else m1_next_state <= #1 m1_tx_clk_h; end m1_tx_clk_l : begin ps2_data_hi_z <= #1 q[0]; if (ps2_clk_s) m1_next_state <= #1 m1_tx_wait_clk_h; else m1_next_state <= #1 m1_tx_clk_l; end m1_tx_wait_keyboard_ack : begin if (~ps2_clk_s && ps2_data_s) m1_next_state <= #1 m1_tx_error_no_keyboard_ack; else if (~ps2_clk_s && ~ps2_data_s) m1_next_state <= #1 m1_tx_done_recovery; else m1_next_state <= #1 m1_tx_wait_keyboard_ack; end m1_tx_done_recovery : begin if (ps2_clk_s && ps2_data_s) m1_next_state <= #1 m1_rx_clk_h; else m1_next_state <= #1 m1_tx_done_recovery; end m1_tx_error_no_keyboard_ack : begin tx_error_no_keyboard_ack <= #1 1; if (ps2_clk_s && ps2_data_s) m1_next_state <= #1 m1_rx_clk_h; else m1_next_state <= #1 m1_tx_error_no_keyboard_ack; end default : m1_next_state <= #1 m1_rx_clk_h; endcase end // State register always @(posedge clk or posedge reset) begin : m2_state_register if (reset) m2_state <= #1 m2_rx_data_ready_ack; else m2_state <= #1 m2_next_state; end // State transition logic always @(m2_state or rx_output_strobe or rx_read) begin : m2_state_logic case (m2_state) m2_rx_data_ready_ack: begin rx_data_ready <= #1 1'b0; if (rx_output_strobe) m2_next_state <= #1 m2_rx_data_ready; else m2_next_state <= #1 m2_rx_data_ready_ack; end m2_rx_data_ready: begin rx_data_ready <= #1 1'b1; if (rx_read) m2_next_state <= #1 m2_rx_data_ready_ack; else m2_next_state <= #1 m2_rx_data_ready; end default : m2_next_state <= #1 m2_rx_data_ready_ack; endcase end // This is the bit counter always @(posedge clk or posedge reset) begin if ( reset) bit_count <= #1 0; else if ( rx_shifting_done || (m1_state == m1_tx_wait_keyboard_ack) // After tx is done. ) bit_count <= #1 0; // normal reset else if (timer_60usec_done && (m1_state == m1_rx_clk_h) && (ps2_clk_s) ) bit_count <= #1 0; // rx watchdog timer reset else if ( (m1_state == m1_rx_falling_edge_marker) // increment for rx ||(m1_state == m1_tx_rising_edge_marker) // increment for tx ) bit_count <= #1 bit_count + 1; end // This signal is high for one clock at the end of the timer count. assign rx_shifting_done = (bit_count == `TOTAL_BITS); assign tx_shifting_done = (bit_count == `TOTAL_BITS-1); // This is the signal which enables loading of the shift register. // It also indicates "ack" to the device writing to the transmitter. assign tx_write_ack_o = ( (tx_write && (m1_state == m1_rx_clk_h)) ||(tx_write && (m1_state == m1_rx_clk_l)) ); // This is the ODD parity bit for the transmitted word. assign tx_parity_bit = ~^tx_data; // This is the shift register always @(posedge clk or posedge reset) begin if (reset) q <= #1 0; else if (tx_write_ack_o) q <= #1 {1'b1,tx_parity_bit,tx_data,1'b0}; else if ( (m1_state == m1_rx_falling_edge_marker) ||(m1_state == m1_tx_rising_edge_marker) ) q <= #1 {ps2_data_s,q[`TOTAL_BITS-1:1]}; end // This is the 60usec timer counter always @(posedge clk) begin if (~enable_timer_60usec) timer_60usec_count <= #1 0; else if ( timer_done && !timer_60usec_done) timer_60usec_count<= #1 timer_60usec_count +1; end assign timer_60usec_done = (timer_60usec_count == (TIMER_60USEC_VALUE_PP )); always @(posedge clk or posedge reset) if (reset) timer_5usec <= #1 1; else if (!enable_timer_60usec) timer_5usec <= #1 1; else if (timer_5usec == devide_reg_i) begin timer_5usec <= #1 1; timer_done <= #1 1; end else begin timer_5usec<= #1 timer_5usec +1; timer_done <= #1 0; end // This is the 5usec timer counter always @(posedge clk) begin if (~enable_timer_5usec) timer_5usec_count <= #1 0; else if (~timer_5usec_done) timer_5usec_count <= #1 timer_5usec_count + 1; end assign timer_5usec_done = (timer_5usec_count == devide_reg_i -1); // Create the signals which indicate special scan codes received. // These are the "unlatched versions." assign released = (q[8:1] == `RELEASE_CODE) && rx_shifting_done && translate ; // Store the special scan code status bits // Not the final output, but an intermediate storage place, // until the entire set of output data can be assembled. always @(posedge clk or posedge reset) begin if (reset) hold_released <= #1 0; else if (rx_output_event) begin hold_released <= #1 0; end else begin if (rx_shifting_done && released) hold_released <= #1 1; end end // Output the special scan code flags, the scan code and the ascii always @(posedge clk or posedge reset) begin if (reset) begin rx_released <= #1 0; rx_scan_code <= #1 0; end else if (rx_output_strobe) begin rx_released <= #1 hold_released; rx_scan_code <= #1 q[8:1]; end end // Store the final rx output data only when all extend and release codes // are received and the next (actual key) scan code is also ready. // (the presence of rx_extended or rx_released refers to the // the current latest scan code received, not the previously latched flags.) assign rx_output_event = (rx_shifting_done && ~released ); assign rx_output_strobe = (rx_shifting_done && ~released ); endmodule //`undefine TOTAL_BITS //`undefine EXTEND_CODE //`undefine RELEASE_CODE //`undefine LEFT_SHIFT //`undefine RIGHT_SHIFT