URL
https://opencores.org/ocsvn/spacewiresystemc/spacewiresystemc/trunk
Subversion Repositories spacewiresystemc
[/] [spacewiresystemc/] [trunk/] [altera_work/] [spw_fifo_ulight/] [ulight_fifo/] [synthesis/] [submodules/] [ulight_fifo_mm_interconnect_0_router.sv] - Rev 40
Compare with Previous | Blame | View Log
// (C) 2001-2017 Intel Corporation. All rights reserved.
// Your use of Intel Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files from any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Intel Program License Subscription
// Agreement, Intel FPGA IP License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Intel and sold by
// Intel or its authorized distributors. Please refer to the applicable
// agreement for further details.
// Your use of Altera Corporation's design tools, logic functions and other
// software and tools, and its AMPP partner logic functions, and any output
// files any of the foregoing (including device programming or simulation
// files), and any associated documentation or information are expressly subject
// to the terms and conditions of the Altera Program License Subscription
// Agreement, Altera MegaCore Function License Agreement, or other applicable
// license agreement, including, without limitation, that your use is for the
// sole purpose of programming logic devices manufactured by Altera and sold by
// Altera or its authorized distributors. Please refer to the applicable
// agreement for further details.
// $Id: //acds/rel/17.1std/ip/merlin/altera_merlin_router/altera_merlin_router.sv.terp#1 $
// $Revision: #1 $
// $Date: 2017/07/30 $
// $Author: swbranch $
// -------------------------------------------------------
// Merlin Router
//
// Asserts the appropriate one-hot encoded channel based on
// either (a) the address or (b) the dest id. The DECODER_TYPE
// parameter controls this behaviour. 0 means address decoder,
// 1 means dest id decoder.
//
// In the case of (a), it also sets the destination id.
// -------------------------------------------------------
`timescale 1 ns / 1 ns
module ulight_fifo_mm_interconnect_0_router_default_decode
#(
parameter DEFAULT_CHANNEL = 0,
DEFAULT_WR_CHANNEL = -1,
DEFAULT_RD_CHANNEL = -1,
DEFAULT_DESTID = 12
)
(output [104 - 100 : 0] default_destination_id,
output [22-1 : 0] default_wr_channel,
output [22-1 : 0] default_rd_channel,
output [22-1 : 0] default_src_channel
);
assign default_destination_id =
DEFAULT_DESTID[104 - 100 : 0];
generate
if (DEFAULT_CHANNEL == -1) begin : no_default_channel_assignment
assign default_src_channel = '0;
end
else begin : default_channel_assignment
assign default_src_channel = 22'b1 << DEFAULT_CHANNEL;
end
endgenerate
generate
if (DEFAULT_RD_CHANNEL == -1) begin : no_default_rw_channel_assignment
assign default_wr_channel = '0;
assign default_rd_channel = '0;
end
else begin : default_rw_channel_assignment
assign default_wr_channel = 22'b1 << DEFAULT_WR_CHANNEL;
assign default_rd_channel = 22'b1 << DEFAULT_RD_CHANNEL;
end
endgenerate
endmodule
module ulight_fifo_mm_interconnect_0_router
(
// -------------------
// Clock & Reset
// -------------------
input clk,
input reset,
// -------------------
// Command Sink (Input)
// -------------------
input sink_valid,
input [129-1 : 0] sink_data,
input sink_startofpacket,
input sink_endofpacket,
output sink_ready,
// -------------------
// Command Source (Output)
// -------------------
output src_valid,
output reg [129-1 : 0] src_data,
output reg [22-1 : 0] src_channel,
output src_startofpacket,
output src_endofpacket,
input src_ready
);
// -------------------------------------------------------
// Local parameters and variables
// -------------------------------------------------------
localparam PKT_ADDR_H = 65;
localparam PKT_ADDR_L = 36;
localparam PKT_DEST_ID_H = 104;
localparam PKT_DEST_ID_L = 100;
localparam PKT_PROTECTION_H = 119;
localparam PKT_PROTECTION_L = 117;
localparam ST_DATA_W = 129;
localparam ST_CHANNEL_W = 22;
localparam DECODER_TYPE = 0;
localparam PKT_TRANS_WRITE = 68;
localparam PKT_TRANS_READ = 69;
localparam PKT_ADDR_W = PKT_ADDR_H-PKT_ADDR_L + 1;
localparam PKT_DEST_ID_W = PKT_DEST_ID_H-PKT_DEST_ID_L + 1;
// -------------------------------------------------------
// Figure out the number of bits to mask off for each slave span
// during address decoding
// -------------------------------------------------------
localparam PAD0 = log2ceil(64'h10 - 64'h0);
localparam PAD1 = log2ceil(64'h10010 - 64'h10000);
localparam PAD2 = log2ceil(64'h1a010 - 64'h1a000);
localparam PAD3 = log2ceil(64'h20010 - 64'h20000);
localparam PAD4 = log2ceil(64'h2a010 - 64'h2a000);
localparam PAD5 = log2ceil(64'h30010 - 64'h30000);
localparam PAD6 = log2ceil(64'h3a010 - 64'h3a000);
localparam PAD7 = log2ceil(64'h40010 - 64'h40000);
localparam PAD8 = log2ceil(64'h4a010 - 64'h4a000);
localparam PAD9 = log2ceil(64'h50010 - 64'h50000);
localparam PAD10 = log2ceil(64'h5a010 - 64'h5a000);
localparam PAD11 = log2ceil(64'h60010 - 64'h60000);
localparam PAD12 = log2ceil(64'h6a010 - 64'h6a000);
localparam PAD13 = log2ceil(64'h70010 - 64'h70000);
localparam PAD14 = log2ceil(64'h80010 - 64'h80000);
localparam PAD15 = log2ceil(64'h90010 - 64'h90000);
localparam PAD16 = log2ceil(64'ha0010 - 64'ha0000);
localparam PAD17 = log2ceil(64'hb0010 - 64'hb0000);
localparam PAD18 = log2ceil(64'hc0010 - 64'hc0000);
localparam PAD19 = log2ceil(64'hd0010 - 64'hd0000);
localparam PAD20 = log2ceil(64'he0010 - 64'he0000);
localparam PAD21 = log2ceil(64'hf0010 - 64'hf0000);
// -------------------------------------------------------
// Work out which address bits are significant based on the
// address range of the slaves. If the required width is too
// large or too small, we use the address field width instead.
// -------------------------------------------------------
localparam ADDR_RANGE = 64'hf0010;
localparam RANGE_ADDR_WIDTH = log2ceil(ADDR_RANGE);
localparam OPTIMIZED_ADDR_H = (RANGE_ADDR_WIDTH > PKT_ADDR_W) ||
(RANGE_ADDR_WIDTH == 0) ?
PKT_ADDR_H :
PKT_ADDR_L + RANGE_ADDR_WIDTH - 1;
localparam RG = RANGE_ADDR_WIDTH-1;
localparam REAL_ADDRESS_RANGE = OPTIMIZED_ADDR_H - PKT_ADDR_L;
reg [PKT_ADDR_W-1 : 0] address;
always @* begin
address = {PKT_ADDR_W{1'b0}};
address [REAL_ADDRESS_RANGE:0] = sink_data[OPTIMIZED_ADDR_H : PKT_ADDR_L];
end
// -------------------------------------------------------
// Pass almost everything through, untouched
// -------------------------------------------------------
assign sink_ready = src_ready;
assign src_valid = sink_valid;
assign src_startofpacket = sink_startofpacket;
assign src_endofpacket = sink_endofpacket;
wire [PKT_DEST_ID_W-1:0] default_destid;
wire [22-1 : 0] default_src_channel;
// -------------------------------------------------------
// Write and read transaction signals
// -------------------------------------------------------
wire read_transaction;
assign read_transaction = sink_data[PKT_TRANS_READ];
ulight_fifo_mm_interconnect_0_router_default_decode the_default_decode(
.default_destination_id (default_destid),
.default_wr_channel (),
.default_rd_channel (),
.default_src_channel (default_src_channel)
);
always @* begin
src_data = sink_data;
src_channel = default_src_channel;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = default_destid;
// --------------------------------------------------
// Address Decoder
// Sets the channel and destination ID based on the address
// --------------------------------------------------
// ( 0x0 .. 0x10 )
if ( {address[RG:PAD0],{PAD0{1'b0}}} == 20'h0 ) begin
src_channel = 22'b0000000000000000000001;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 12;
end
// ( 0x10000 .. 0x10010 )
if ( {address[RG:PAD1],{PAD1{1'b0}}} == 20'h10000 && read_transaction ) begin
src_channel = 22'b0000000000000000000010;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 16;
end
// ( 0x1a000 .. 0x1a010 )
if ( {address[RG:PAD2],{PAD2{1'b0}}} == 20'h1a000 && read_transaction ) begin
src_channel = 22'b0000010000000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 19;
end
// ( 0x20000 .. 0x20010 )
if ( {address[RG:PAD3],{PAD3{1'b0}}} == 20'h20000 && read_transaction ) begin
src_channel = 22'b0000000000000000000100;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 15;
end
// ( 0x2a000 .. 0x2a010 )
if ( {address[RG:PAD4],{PAD4{1'b0}}} == 20'h2a000 && read_transaction ) begin
src_channel = 22'b0000100000000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 5;
end
// ( 0x30000 .. 0x30010 )
if ( {address[RG:PAD5],{PAD5{1'b0}}} == 20'h30000 && read_transaction ) begin
src_channel = 22'b0000000000000000001000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 4;
end
// ( 0x3a000 .. 0x3a010 )
if ( {address[RG:PAD6],{PAD6{1'b0}}} == 20'h3a000 ) begin
src_channel = 22'b0001000000000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 1;
end
// ( 0x40000 .. 0x40010 )
if ( {address[RG:PAD7],{PAD7{1'b0}}} == 20'h40000 ) begin
src_channel = 22'b0000000000000000010000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 6;
end
// ( 0x4a000 .. 0x4a010 )
if ( {address[RG:PAD8],{PAD8{1'b0}}} == 20'h4a000 && read_transaction ) begin
src_channel = 22'b0010000000000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 11;
end
// ( 0x50000 .. 0x50010 )
if ( {address[RG:PAD9],{PAD9{1'b0}}} == 20'h50000 && read_transaction ) begin
src_channel = 22'b0000000000000000100000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 9;
end
// ( 0x5a000 .. 0x5a010 )
if ( {address[RG:PAD10],{PAD10{1'b0}}} == 20'h5a000 && read_transaction ) begin
src_channel = 22'b0100000000000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 3;
end
// ( 0x60000 .. 0x60010 )
if ( {address[RG:PAD11],{PAD11{1'b0}}} == 20'h60000 && read_transaction ) begin
src_channel = 22'b0000000000000001000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 7;
end
// ( 0x6a000 .. 0x6a010 )
if ( {address[RG:PAD12],{PAD12{1'b0}}} == 20'h6a000 && read_transaction ) begin
src_channel = 22'b1000000000000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 2;
end
// ( 0x70000 .. 0x70010 )
if ( {address[RG:PAD13],{PAD13{1'b0}}} == 20'h70000 ) begin
src_channel = 22'b0000000000000010000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 14;
end
// ( 0x80000 .. 0x80010 )
if ( {address[RG:PAD14],{PAD14{1'b0}}} == 20'h80000 ) begin
src_channel = 22'b0000000000000100000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 0;
end
// ( 0x90000 .. 0x90010 )
if ( {address[RG:PAD15],{PAD15{1'b0}}} == 20'h90000 ) begin
src_channel = 22'b0000000000001000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 13;
end
// ( 0xa0000 .. 0xa0010 )
if ( {address[RG:PAD16],{PAD16{1'b0}}} == 20'ha0000 ) begin
src_channel = 22'b0000000000010000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 20;
end
// ( 0xb0000 .. 0xb0010 )
if ( {address[RG:PAD17],{PAD17{1'b0}}} == 20'hb0000 ) begin
src_channel = 22'b0000000000100000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 21;
end
// ( 0xc0000 .. 0xc0010 )
if ( {address[RG:PAD18],{PAD18{1'b0}}} == 20'hc0000 && read_transaction ) begin
src_channel = 22'b0000000001000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 10;
end
// ( 0xd0000 .. 0xd0010 )
if ( {address[RG:PAD19],{PAD19{1'b0}}} == 20'hd0000 && read_transaction ) begin
src_channel = 22'b0000000010000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 8;
end
// ( 0xe0000 .. 0xe0010 )
if ( {address[RG:PAD20],{PAD20{1'b0}}} == 20'he0000 ) begin
src_channel = 22'b0000000100000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 17;
end
// ( 0xf0000 .. 0xf0010 )
if ( {address[RG:PAD21],{PAD21{1'b0}}} == 20'hf0000 ) begin
src_channel = 22'b0000001000000000000000;
src_data[PKT_DEST_ID_H:PKT_DEST_ID_L] = 18;
end
end
// --------------------------------------------------
// Ceil(log2()) function
// --------------------------------------------------
function integer log2ceil;
input reg[65:0] val;
reg [65:0] i;
begin
i = 1;
log2ceil = 0;
while (i < val) begin
log2ceil = log2ceil + 1;
i = i << 1;
end
end
endfunction
endmodule