URL
https://opencores.org/ocsvn/xilinx_virtex_fp_library/xilinx_virtex_fp_library/trunk
Subversion Repositories xilinx_virtex_fp_library
[/] [xilinx_virtex_fp_library/] [trunk/] [DualPathFPAdderMappedConversions/] [DualPathAdderConversion.v] - Rev 19
Compare with Previous | Blame | View Log
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: UPT // Engineer: Constantina-Elena Gavriliu // // Create Date: 00:31:28 12/19/2013 // Design Name: // Module Name: DualPathAdderConversion // Project Name: // Target Devices: // Tool versions: // Description: A ± B with mapped conversions // //do not take into consideration cases for which the operation generates a NaN or Infinity exception (with corresponding sign) when initial "special cases" are not such exceptions // // Dependencies: effective_op.v // leading_zeros.v // shifter.v // rounding.v // special_cases.v // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module DualPathAdderConversion #( parameter size_mantissa = 24, //1.M parameter size_exponent = 8, parameter size_exception_field = 2, parameter size_counter = 5,//log2(size_mantissa) + 1 = 5) parameter [size_exception_field - 1 : 0] zero = 0, //00 parameter [size_exception_field - 1 : 0] normal_number = 1, //01 parameter [size_exception_field - 1 : 0] infinity = 2, //10 parameter [size_exception_field - 1 : 0] NaN = 3, //11 parameter size_integer = 32, parameter counter_integer = 6,//log2(size_integer) + 1 = 6) parameter [1 : 0] FP_operation = 0, //00 parameter [1 : 0] FP_to_int = 1, //01 - mapped on FarPath parameter [1 : 0] int_to_FP = 2, //10 - mapped on ClosePath parameter pipeline = 0, parameter pipeline_pos = 0, // 8 bits parameter size = size_mantissa + size_exponent + size_exception_field ) ( input [1:0] conversion, input sub, input [size - 1 : 0] a_number_i, input [size - 1 : 0] b_number_i, output[size - 1 : 0] resulted_number_o); parameter double_size_mantissa = size_mantissa + size_mantissa; parameter double_size_counter = size_counter + 1; parameter max_size = (size_integer > size_mantissa)? size_integer : size_mantissa; parameter max_counter = (counter_integer > size_counter)? counter_integer : size_counter; parameter size_diff_i_m = (size_integer > size_mantissa)? (size_integer - size_mantissa) : (size_mantissa - size_integer); parameter bias = {1'b0,{(size_exponent-1){1'b1}}}; parameter exp_biasedCP = bias + size_mantissa; parameter exponentCP = exp_biasedCP - 1'b1; wire [size_exception_field - 1 : 0] sp_case_a_number, sp_case_b_number; wire [size_mantissa - 1 : 0] m_a_number, m_b_number; wire [size_exponent - 1 : 0] e_a_number, e_b_number; wire s_a_number, s_b_number; wire [size_exponent : 0] a_greater_exponent, b_greater_exponent; wire [size_exponent - 1 : 0] exp_difference; wire [size_exponent : 0] exp_inter; wire eff_op; wire [size_exception_field - 1 : 0] set_b_sp_case, resulted_exception_field; wire resulted_sign; wire swap; wire zero_flag; wire [max_size - 1 : 0] max_entityFP; wire [size_exponent - 1 : 0] resulted_e_oFP; wire [size_exponent - 1 : 0] adjust_mantissaFP; wire [size_exponent - 1 : 0] unadjusted_exponentFP; wire [size_mantissa - 1 : 0] mantissa_to_shiftFP, shifted_m_bFP, convert_neg_mantissaFP; wire [size_mantissa + 2 : 0] adder_mantissaFP; wire [size_mantissa - 1 : 0] resulted_inter_m_oFP, resulted_m_oFP; wire [size_mantissa - 1 : 0] initial_rounding_bitsFP; wire [size_mantissa - 2 : 0] inter_rounding_bitsFP; wire [double_size_mantissa:0] normalized_mantissaFP; wire [size_mantissa + 1 : 0] unnormalized_mantissaFP, conversion_dummiesFP; wire [size_exponent : 0] shift_value_when_positive_exponentFP, shift_value_when_negative_exponentFP; wire [size_exponent - 1 : 0] shift_valueFP, shft_valFP; wire [size_mantissa - 1 : 0] entity_to_roundFP; wire [size_mantissa : 0] dummy_entityFP; wire [size_exponent : 0] exponentFP; wire dummy_bitFP; wire [max_size - 1 : 0] max_entityCP; wire [size_mantissa - 1 : 0] shifted_m_bCP; wire [size_mantissa + 2 : 0] adder_mantissaCP; wire [size_mantissa + 1 : 0] unnormalized_mantissaCP; wire [size_mantissa : 0] rounded_mantissaCP; wire [size_mantissa - 1 : 0] r_mantissaCP; wire [size_exponent - 1 : 0] resulted_e_oCP; wire [size_mantissa - 1 : 0] resulted_m_oCP; wire [size_exponent - 1 : 0] unadjusted_exponentCP, adjust_exponentCP; wire [size_exponent - 1 : 0] exp_selectionCP; wire [max_size - size_mantissa : 0] dummy_bitsCP, dummy_entityCP; wire [max_counter - 1 : 0] lzsCP; wire init_shft_bitCP, shft_bitCP; wire lsb_shft_bitCP; wire [4:0] sign_cases; reg intermediar_sign; wire do_conversion; assign do_conversion = |conversion; //let me know if there is a conversion assign e_a_number = a_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1]; //exponent for a_number_i assign e_b_number = b_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1]; //exponent for b_number_i assign s_a_number = a_number_i[size - size_exception_field - 1]; //sign for a_number_i assign s_b_number = b_number_i[size - size_exception_field - 1]; //sign for b_number_i assign sp_case_a_number = a_number_i[size - 1 : size - size_exception_field]; //special_case for a_number_i assign sp_case_b_number = b_number_i[size - 1 : size - size_exception_field]; //special_case for b_number_i //find the greater exponent assign a_greater_exponent = e_a_number - e_b_number; assign b_greater_exponent = e_b_number - e_a_number; //find the difference between exponents assign exp_difference = (a_greater_exponent[size_exponent])? b_greater_exponent[size_exponent - 1 : 0] : a_greater_exponent[size_exponent - 1 : 0]; assign exp_inter = (b_greater_exponent[size_exponent])? {1'b0, e_a_number} : {1'b0, e_b_number}; //set shifter always on m_b_number assign {m_a_number, m_b_number} = (b_greater_exponent[size_exponent])? {{1'b1, a_number_i[size_mantissa - 2 :0]}, {1'b1, b_number_i[size_mantissa - 2 :0]}} : {{1'b1, b_number_i[size_mantissa - 2 :0]}, {1'b1, a_number_i[size_mantissa - 2 :0]}}; effective_op effective_op_instance( .a_sign(s_a_number), .b_sign(s_b_number), .sub(sub), .eff_op(eff_op)); //------------------------------------------------------- start ClosePath addition and conversion assign {shifted_m_bCP, init_shft_bitCP} = (exp_difference)? {1'b0, m_b_number[size_mantissa-1:0]} : {m_b_number, 1'b0}; //compute unnormalized_mantissa assign adder_mantissaCP = {1'b0, m_a_number, 1'b0} - {1'b0, shifted_m_bCP, init_shft_bitCP}; assign {unnormalized_mantissaCP, shft_bitCP} = (adder_mantissaCP[size_mantissa + 2])? ({~adder_mantissaCP[size_mantissa + 1 : 0], ~init_shft_bitCP}) : ({adder_mantissaCP[size_mantissa + 1 : 0], init_shft_bitCP}); assign max_entityCP = do_conversion? (a_number_i[size_integer-1]? (~a_number_i[max_size-1 : 0]) : a_number_i[max_size-1 : 0]) : {{(max_size-size_mantissa-2){1'b0}}, unnormalized_mantissaCP[size_mantissa + 1 : 0]}; assign lsb_shft_bitCP = (do_conversion)? a_number_i[size_integer-1] : adder_mantissaCP[size_mantissa+2];//sign? assign max_ovfCP = do_conversion? 1'b0 : unnormalized_mantissaCP[size_mantissa + 1]; //compute leading_zeros over unnormalized mantissa leading_zeros #(.SIZE_INT(max_size), .SIZE_COUNTER(max_counter), .PIPELINE(pipeline)) leading_zeros_CP_instance ( .a(max_entityCP), .ovf(max_ovfCP), .lz(lzsCP)); //compute shifting over unnormalized_mantissa shifter #( .INPUT_SIZE(max_size), .SHIFT_SIZE(max_counter), .OUTPUT_SIZE(max_size + 1), .DIRECTION(1'b1), //0=right, 1=left .PIPELINE(pipeline), .POSITION(pipeline_pos)) shifter_CP_instance( .a(max_entityCP),//mantissa .arith(lsb_shft_bitCP), .shft(lzsCP), .shifted_a({r_mantissaCP, dummy_bitsCP})); assign dummy_entityCP = (conversion[1] & (&dummy_bitsCP[max_size - size_mantissa - 1:0]) & (~dummy_bitsCP[max_size - size_mantissa]))? (a_number_i[size_integer-1]? ~dummy_bitsCP : dummy_bitsCP) : dummy_bitsCP; assign rounded_mantissaCP = (dummy_entityCP[max_size - size_mantissa] && (r_mantissaCP[0] | (|dummy_entityCP[max_size - size_mantissa - 1 : 0 ])))? r_mantissaCP + 1'b1 : r_mantissaCP; assign resulted_m_oCP = (rounded_mantissaCP[size_mantissa])? rounded_mantissaCP[size_mantissa : 1] : rounded_mantissaCP[size_mantissa-1:0]; assign ovfCP = do_conversion? s_a_number : adder_mantissaCP[size_mantissa+1]; assign exp_selectionCP = do_conversion? exponentCP : exp_inter - 1'b1; assign adjust_exponentCP = exp_selectionCP - lzsCP; assign unadjusted_exponentCP = adjust_exponentCP + size_diff_i_m; assign resulted_e_oCP = (do_conversion & ~(|max_entityCP))? bias : unadjusted_exponentCP + rounded_mantissaCP[size_mantissa]; //------------------------------------------------------- end ClosePath addition and conversion //--------------------------------------------- start FarPath addition and conversion assign exponentFP = e_a_number - bias; assign shift_value_when_positive_exponentFP = max_size - 2'd2 - exponentFP[size_exponent-1 : 0]; assign shift_value_when_negative_exponentFP = max_size + (~exponentFP[size_exponent-1 : 0]); assign shift_valueFP = (exponentFP[size_exponent])? shift_value_when_negative_exponentFP[size_exponent - 1 : 0] : (shift_value_when_positive_exponentFP[size_exponent])? (~shift_value_when_positive_exponentFP[size_exponent - 1 : 0]): shift_value_when_positive_exponentFP[size_exponent - 1 : 0]; assign shft_valFP = do_conversion? shift_valueFP : exp_difference; assign convert_neg_mantissaFP = {1'b0, ~a_number_i[size_mantissa-2 : 0]}; assign conversion_dummiesFP = {(size_mantissa+1){1'b1}}; assign mantissa_to_shiftFP = do_conversion? (s_a_number? convert_neg_mantissaFP + 1'b1 : {1'b1, a_number_i[size_mantissa-2 : 0]}) : m_b_number; assign arith_shiftFP = do_conversion? s_a_number : 1'b0; //shift m_b_number shifter #( .INPUT_SIZE(size_mantissa), .SHIFT_SIZE(size_exponent), .OUTPUT_SIZE(double_size_mantissa), .DIRECTION(1'b0), //0=right, 1=left .PIPELINE(pipeline), .POSITION(pipeline_pos)) m_b_shifter_FP_instance( .a(mantissa_to_shiftFP), .arith(arith_shiftFP), .shft(shft_valFP), .shifted_a({shifted_m_bFP, initial_rounding_bitsFP})); assign max_entityFP = {s_a_number, shifted_m_bFP[size_mantissa-1 : 0], initial_rounding_bitsFP[size_mantissa-1 : size_mantissa - size_diff_i_m + 1]}; //compute unnormalized_mantissa assign adder_mantissaFP = (eff_op)? ({1'b0, m_a_number, 1'b0} - {1'b0, shifted_m_bFP, initial_rounding_bitsFP[size_mantissa - 1]}) : ({1'b0, m_a_number, 1'b0} + {1'b0, shifted_m_bFP, initial_rounding_bitsFP[size_mantissa - 1]}); //compute unnormalized_mantissa assign unnormalized_mantissaFP = (adder_mantissaFP[size_mantissa + 2])? ~adder_mantissaFP[size_mantissa + 1 : 0] : adder_mantissaFP[size_mantissa + 1 : 0]; assign inter_rounding_bitsFP = ((eff_op)? ((|initial_rounding_bitsFP[size_mantissa - 2 : 0])?~initial_rounding_bitsFP[size_mantissa - 2 : 0] : initial_rounding_bitsFP[size_mantissa - 2 : 0]) : initial_rounding_bitsFP[size_mantissa - 2 : 0]); assign adjust_mantissaFP = unnormalized_mantissaFP[size_mantissa + 1]? 2'd0 : unnormalized_mantissaFP[size_mantissa]? 2'd1 : 2'd2; //compute shifting over unnormalized_mantissa shifter #( .INPUT_SIZE(double_size_mantissa+1), .SHIFT_SIZE(size_exponent), .OUTPUT_SIZE(double_size_mantissa+2), .DIRECTION(1'b1), .PIPELINE(pipeline), .POSITION(pipeline_pos)) unnormalized_no_shifter_FP_instance(.a({unnormalized_mantissaFP, inter_rounding_bitsFP}), .arith(inter_rounding_bitsFP[0]), .shft(adjust_mantissaFP), .shifted_a({normalized_mantissaFP, dummy_bitFP})); assign correction = do_conversion? 1'b0 : eff_op? ((|initial_rounding_bitsFP[size_mantissa - 2 : 0])? ((adder_mantissaFP[0] | ((~adder_mantissaFP[0]) & (~adder_mantissaFP[size_mantissa]) & (~initial_rounding_bitsFP[size_mantissa - 1]) & (~(&{normalized_mantissaFP[size_mantissa-1 : 0],dummy_bitFP}))))? 1'b1 : 1'b0) : 1'b0) : 1'b0; assign entity_to_roundFP = do_conversion? max_entityFP[size_mantissa-1 : 0] : normalized_mantissaFP[double_size_mantissa : double_size_mantissa - size_mantissa + 1]; assign dummy_entityFP = do_conversion? {initial_rounding_bitsFP[size_mantissa - size_diff_i_m : 0], {size_diff_i_m{1'b0}}} : normalized_mantissaFP[double_size_mantissa - size_mantissa: 0]; //instantiate rounding_component rounding #( .SIZE_MOST_S_MANTISSA(size_mantissa), .SIZE_LEAST_S_MANTISSA(size_mantissa + 2'd1)) rounding_FP_instance( .unrounded_mantissa(entity_to_roundFP), .dummy_bits(dummy_entityFP), .correction(correction), .rounded_mantissa(resulted_inter_m_oFP)); assign resulted_m_oFP = resulted_inter_m_oFP; assign unadjusted_exponentFP = exp_inter - adjust_mantissaFP; assign resulted_e_oFP = do_conversion? max_entityFP[size_mantissa+size_exponent-2 : size_mantissa-1] : unadjusted_exponentFP + 1'b1; //-------------------------------------------------------- end FarPath addition and conversion assign set_b_sp_case = do_conversion? zero : sp_case_b_number; //compute exception_field special_cases #( .size_exception_field(size_exception_field), .zero(zero), .normal_number(normal_number), .infinity(infinity), .NaN(NaN)) special_cases_instance( .sp_case_a_number(sp_case_a_number), .sp_case_b_number(set_b_sp_case), .sp_case_result_o(resulted_exception_field)); //set zero_flag in case of equal numbers assign zero_flag = ((exp_difference > 1 | !eff_op) & conversion != int_to_FP)? ~(|resulted_m_oFP) : ~(|resulted_m_oCP); assign sign_cases = {eff_op, s_a_number, s_b_number, a_greater_exponent[size_exponent], b_greater_exponent[size_exponent]}; always @(*) begin case (sign_cases) 5'b00000: intermediar_sign = 1'b0; 5'b00001: intermediar_sign = 1'b0; 5'b00010: intermediar_sign = 1'b0; 5'b10000: intermediar_sign = ~max_ovfCP; 5'b10001: intermediar_sign = 1'b0; 5'b10010: intermediar_sign = 1'b1; 5'b10100: intermediar_sign = ~max_ovfCP; 5'b10101: intermediar_sign = 1'b0; 5'b10110: intermediar_sign = 1'b1; 5'b00100: intermediar_sign = 1'b0; 5'b00101: intermediar_sign = 1'b0; 5'b00110: intermediar_sign = 1'b0; 5'b11000: intermediar_sign = max_ovfCP; 5'b11001: intermediar_sign = 1'b1; 5'b11010: intermediar_sign = 1'b0; 5'b01000: intermediar_sign = 1'b1; 5'b01001: intermediar_sign = 1'b1; 5'b01010: intermediar_sign = 1'b1; 5'b01100: intermediar_sign = 1'b1; 5'b01101: intermediar_sign = 1'b1; 5'b01110: intermediar_sign = 1'b1; 5'b11100: intermediar_sign = max_ovfCP; 5'b11101: intermediar_sign = 1'b1; 5'b11110: intermediar_sign = 1'b0; default: intermediar_sign = 1'b1; endcase end assign resulted_sign = do_conversion? s_a_number : intermediar_sign; assign resulted_number_o = conversion[0]? {3'd0, resulted_e_oFP, resulted_m_oFP[size_mantissa-2 : 0]} : conversion[1]? {normal_number, a_number_i[size_integer - 1],resulted_e_oCP, resulted_m_oCP[size_mantissa-2 : 0]} : (zero_flag)? {size{1'b0}} : (!sp_case_a_number)? {b_number_i[size-1 : size-size_exception_field], eff_op ^ s_b_number, b_number_i[size-1-size_exception_field-1 : 0]} : (!sp_case_b_number)? {a_number_i[size-1 : 0]} : ((exp_difference > 1 | !eff_op) & conversion != int_to_FP)? {resulted_exception_field, resulted_sign, resulted_e_oFP, resulted_m_oFP[size_mantissa-2 : 0]}: {resulted_exception_field, resulted_sign, resulted_e_oCP, resulted_m_oCP[size_mantissa-2 : 0]}; endmodule