URL
https://opencores.org/ocsvn/xilinx_virtex_fp_library/xilinx_virtex_fp_library/trunk
Subversion Repositories xilinx_virtex_fp_library
[/] [xilinx_virtex_fp_library/] [trunk/] [GeneralPrecMAFMappedConversions/] [Multiply_AccumulateConversion.v] - Rev 19
Compare with Previous | Blame | View Log
`timescale 1ns / 1ps ////////////////////////////////////////////////////////////////////////////////// // Company: // Engineer: // // Create Date: 17:53:05 10/15/2013 // Design Name: // Module Name: Multiply_AccumulateConversion // Project Name: // Target Devices: // Tool versions: // Description: C ± A*B with mapped conversions, conversion applies to C number // // Dependencies: // // Revision: // Revision 0.01 - File Created // Additional Comments: // ////////////////////////////////////////////////////////////////////////////////// module Multiply_AccumulateConversion #( parameter size_mantissa = 24, //mantissa bits(1.M) parameter size_exponent = 8, //exponent bits parameter size_counter = 5, //log2(size_mantissa) + 1 = 5 parameter size_exception_field = 2, // zero/normal numbers/infinity/NaN parameter [size_exception_field - 1 : 0] zero = 00, //00 parameter [size_exception_field - 1 : 0] normal_number = 01, //01 parameter [size_exception_field - 1 : 0] infinity = 10, //10 parameter [size_exception_field - 1 : 0] NaN = 11, //11 parameter size_integer = 32, parameter counter_integer = 6, //log2(size_integer) + 1 = 6) parameter [1 : 0] FP_operation = 0, //00 parameter [1 : 0] FP_to_int = 1, //01 parameter [1 : 0] int_to_FP = 2, //10 parameter pipeline = 0, parameter pipeline_pos = 0, //8 bits parameter size = size_exponent + size_mantissa + size_exception_field) ( input [1 : 0] conversion, input [size - 1:0] c_number_i, input [size - 1:0] a_number_i, input [size - 1:0] b_number_i, input sub, output[size - 1:0] resulting_number_o); parameter size_mul_mantissa = size_mantissa + size_mantissa; parameter size_mul_counter = size_counter + 1; parameter max_size = (size_integer > size_mantissa)? size_integer : size_mantissa; parameter max_counter = (counter_integer > size_counter)? counter_integer : size_counter; parameter size_diff_i_m = (size_integer > size_mantissa)? (size_integer - size_mantissa) : (size_mantissa - size_integer); parameter bias = {1'b0,{(size_exponent-1){1'b1}}}; parameter exp_biased = bias + size_mantissa; parameter exponent = (size_mul_mantissa - max_size) + exp_biased; parameter subtr = max_size -2'd2; parameter bias_0_bits = size_exponent - 1; parameter shift_mantissa_0_bits = size_mantissa-1'b1; wire [size_exception_field - 1 : 0] sp_case_a_number, sp_case_b_number, sp_case_c_number; wire [size_mantissa - 1 : 0] m_a_number, m_b_number, m_c_number; wire [size_exponent - 1 : 0] e_a_number, e_b_number, e_c_number; wire s_a_number, s_b_number, s_c_number; wire [size_exponent : 0] ab_greater_exponent, c_greater_exponent; wire [size_exponent - 1 : 0] exp_difference; wire [size_exponent : 0] exp_inter; wire [size_mantissa - 2 : 0] mul_mantissa; wire [size_mul_mantissa - 1 : 0] m_ab_mantissa, c_mantissa; wire [size_exponent : 0] e_ab_number_inter, e_ab_number; wire [size_mul_counter - 1 : 0] lz_mul; wire zero_flag; wire sign_res, sign_inter; wire eff_op; wire [size_mantissa - 1 : 0] initial_rounding_bits, inter_rounding_bits, final_rounding_bits, max_inter_rounding_bits; wire [size_mul_mantissa + 1 : 0] normalized_mantissa, adder_mantissa; wire [size_mul_mantissa : 0] unnormalized_mantissa; wire [size_mul_mantissa - 1 : 0] shifted_m_ab, convert_neg_mantissa, mantissa_to_shift; wire [size_mul_mantissa - 1 : 0] m_c, m_ab; wire [size_exception_field - 1 : 0] sp_case_mul_result_o; wire [size_exception_field - 1 : 0] sp_case_o, sp_case_result_o; wire [size_mantissa - 2 : 0] final_mantissa; wire [size_exponent - 1 : 0] final_exponent; wire [size_mantissa : 0] rounded_mantissa; wire [max_size - 1 : 0] entity_to_round; wire [size_mul_mantissa + 1 : 0] dummy_to_round, inter_dummy_to_round; wire [max_size - size_mantissa - 2 : 0] dummy_out; wire [size_mantissa - 1 : 0] resulted_mantissa; wire [size_exponent - 1 : 0] resulted_exponent; wire [size_exponent : 0] subtracter; wire [size_mul_mantissa-max_size : 0] max_entityINT_FP_msb; wire [size_exponent : 0] shift_value_when_positive_exponent, shift_value_when_negative_exponent; wire [size_exponent - 1 : 0] shift_value, shft_val; wire [size_exponent - 1 : 0] max_unadjusted_exponent, max_adjust_exponent, adjust; wire [size_exponent - 1 : 0] max_exp_selection; wire [size_exponent - 1 : 0] max_resulted_e_o; wire [max_size - 1 : 0] max_entityINT_FP, max_entityFP_INT; wire lsb_shft_bit; wire arith_shift; wire max_ovf; wire do_conversion; assign do_conversion = |conversion; //let me know if there is a conversion assign m_a_number = {1'b1, a_number_i[size_mantissa - 2 :0]}; assign m_b_number = {1'b1, b_number_i[size_mantissa - 2 :0]}; assign m_c_number = {1'b1, c_number_i[size_mantissa - 2 :0]}; assign e_a_number = a_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1]; assign e_b_number = b_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1]; assign e_c_number = c_number_i[size_mantissa + size_exponent - 1 : size_mantissa - 1]; assign s_a_number = a_number_i[size - size_exception_field - 1]; assign s_b_number = b_number_i[size - size_exception_field - 1]; assign s_c_number = c_number_i[size - size_exception_field - 1]; assign sp_case_a_number = a_number_i[size - 1 : size - size_exception_field]; assign sp_case_b_number = b_number_i[size - 1 : size - size_exception_field]; assign sp_case_c_number = c_number_i[size - 1 : size - size_exception_field]; //instantiate multiply component multiply #( .size_mantissa(size_mantissa), .size_counter(size_counter), .size_mul_mantissa(size_mul_mantissa)) multiply_instance ( .a_mantissa_i(m_a_number), .b_mantissa_i(m_b_number), .mul_mantissa(m_ab_mantissa)); assign mul_mantissa = m_ab_mantissa[size_mul_mantissa-1]? m_ab_mantissa[size_mul_mantissa-2 : size_mul_mantissa - size_mantissa] : m_ab_mantissa[size_mul_mantissa-3 : size_mul_mantissa - size_mantissa - 1]; assign c_mantissa = {1'b0,m_c_number, {(shift_mantissa_0_bits){1'b0}}}; assign e_ab_number_inter = e_a_number + e_b_number; assign e_ab_number = e_ab_number_inter - {(bias_0_bits){1'b1}}; //find the greater exponent assign ab_greater_exponent = e_ab_number - e_c_number; assign c_greater_exponent = e_c_number - e_ab_number; //find the difference between exponents assign exp_difference = (ab_greater_exponent[size_exponent])? c_greater_exponent[size_exponent - 1 : 0] : ab_greater_exponent[size_exponent - 1 : 0]; assign exp_inter = (c_greater_exponent[size_exponent])? {1'b0, e_ab_number} : {1'b0, e_c_number}; //set shifter always on m_ab_number assign {m_c, m_ab} = (ab_greater_exponent[size_exponent])? {c_mantissa, m_ab_mantissa} : {m_ab_mantissa, c_mantissa}; assign subtracter = e_c_number - bias; assign shift_value_when_positive_exponent = subtr - subtracter[size_exponent-1 : 0]; assign shift_value_when_negative_exponent = max_size + (~subtracter[size_exponent-1 : 0]); assign shift_value = (subtracter[size_exponent])? shift_value_when_negative_exponent[size_exponent - 1 : 0] : (shift_value_when_positive_exponent[size_exponent])? (~shift_value_when_positive_exponent[size_exponent - 1 : 0]): shift_value_when_positive_exponent[size_exponent - 1 : 0]; assign shft_val = do_conversion? shift_value : exp_difference; assign convert_neg_mantissa = {{(size_mantissa){1'b1}}, 1'b0, ~c_number_i[size_mantissa-2 : 0]}; assign mantissa_to_shift = conversion[0]? (s_c_number? {{size_mantissa{1'b1}}, convert_neg_mantissa + 1'b1} : {{size_mantissa{1'b0}}, 1'b1, c_number_i[size_mantissa-2 : 0]}) : m_ab; assign arith_shift = conversion[0]? s_c_number : 1'b0; //shift m_ab_number shifter #( .INPUT_SIZE(size_mul_mantissa), .SHIFT_SIZE(size_exponent), .OUTPUT_SIZE(size_mul_mantissa + size_mantissa), .DIRECTION(1'b0), //0=right, 1=left .PIPELINE(pipeline), .POSITION(pipeline_pos)) m_b_shifter_instance( .a(mantissa_to_shift),//mantissa .arith(arith_shift),//logical shift .shft(shft_val), .shifted_a({shifted_m_ab, initial_rounding_bits})); assign max_entityFP_INT = {s_c_number, shifted_m_ab[max_size - size_diff_i_m - 1 : 0], initial_rounding_bits[size_mantissa - 1 : size_mantissa - size_diff_i_m + 1]}; //instantiate effective_op component effective_op effective_op_instance( .sign_a(s_a_number), .sign_b(s_b_number), .sign_c(s_c_number), .sub(sub), .eff_sub(eff_op)); //instantiate accumulate component accumulate #(.size_mul_mantissa(size_mul_mantissa)) accumulate_instance ( .m_a(m_c), .m_b(shifted_m_ab), .eff_op(eff_op), .adder_mantissa(adder_mantissa)); //compute unnormalized_mantissa assign unnormalized_mantissa = (adder_mantissa[size_mul_mantissa + 1])? (~adder_mantissa[size_mul_mantissa : 0]) : adder_mantissa[size_mul_mantissa : 0]; assign inter_rounding_bits = conversion[0]? {initial_rounding_bits[size_mantissa - size_diff_i_m : 0], {(size_diff_i_m - 1){initial_rounding_bits[0]}}} : conversion[1]? {size_mantissa{1'b0}} : ((adder_mantissa[size_mul_mantissa + 1])? ~initial_rounding_bits : initial_rounding_bits); assign max_entityINT_FP = do_conversion? (c_number_i[size_integer - 1]? (~c_number_i[max_size-1 : 0]) : c_number_i[max_size-1 : 0]) : unnormalized_mantissa[max_size-1 : 0]; assign max_entityINT_FP_msb = do_conversion? {(size_mul_mantissa-max_size+1){1'b0}} : unnormalized_mantissa[size_mul_mantissa : max_size]; assign lsb_shft_bit = do_conversion? conversion[0]? s_c_number : c_number_i[size_integer-1] : max_entityINT_FP[0]; assign max_ovf = do_conversion? 1'b0 : unnormalized_mantissa[size_mul_mantissa]; //instantiate leading_zeros component leading_zeros #(.SIZE_INT(size_mul_mantissa + 1'b1), .SIZE_COUNTER(size_mul_counter), .PIPELINE(pipeline)) leading_zeros_instance( .a({max_entityINT_FP_msb, max_entityINT_FP}), .ovf(max_ovf), .lz(lz_mul)); assign max_inter_rounding_bits = conversion[1]? {size_mantissa{c_number_i[size_integer-1]}} : {inter_rounding_bits, inter_rounding_bits[0]}; //instantiate shifter component shifter #( .INPUT_SIZE(size_mul_mantissa + size_mantissa + 1), .SHIFT_SIZE(size_mul_counter), .OUTPUT_SIZE(size_mul_mantissa + size_mantissa + 2), .DIRECTION(1'b1), .PIPELINE(pipeline), .POSITION(pipeline_pos)) shifter_instance( .a( {max_entityINT_FP_msb, max_entityINT_FP, max_inter_rounding_bits}), .arith(lsb_shft_bit), .shft(lz_mul), .shifted_a({normalized_mantissa, final_rounding_bits})); assign inter_dummy_to_round = {normalized_mantissa[size_mantissa + 1 : 0], final_rounding_bits}; assign entity_to_round = conversion[0]? max_entityFP_INT : {{(max_size - size_mantissa){1'b0}}, normalized_mantissa[size_mul_mantissa+1 : size_mantissa + 2]}; assign dummy_to_round = conversion[0]? {inter_rounding_bits, {(size_mantissa + 2){1'b0}}} : (conversion[1] & (&{normalized_mantissa[size_mantissa : 0], final_rounding_bits}) & (~normalized_mantissa[size_mantissa+1]))? (c_number_i[size_integer-1]? ~inter_dummy_to_round : inter_dummy_to_round) : {normalized_mantissa[size_mantissa + 1 : 0], final_rounding_bits}; //instantiate rounding_component rounding #( .SIZE_MOST_S_MANTISSA(max_size), .SIZE_LEAST_S_MANTISSA(size_mul_mantissa+2)) rounding_instance( .unrounded_mantissa(entity_to_round ), .dummy_bits(dummy_to_round), .rounded_mantissa({dummy_out, rounded_mantissa})); assign max_exp_selection = do_conversion? exponent : exp_inter; assign max_adjust_exponent = max_exp_selection - lz_mul; assign adjust = do_conversion? size_diff_i_m : 2'd2; assign max_unadjusted_exponent = max_adjust_exponent + adjust; assign max_resulted_e_o = (do_conversion & ~(|{max_entityINT_FP_msb, max_entityINT_FP}))? bias : max_unadjusted_exponent + rounded_mantissa[size_mantissa]; assign resulted_exponent = conversion[0]? max_entityFP_INT[size_mantissa+size_exponent-2 : size_mantissa-1] : max_resulted_e_o; assign resulted_mantissa = conversion[0]? rounded_mantissa/*max_entityFP_INT[size_mantissa-1 : 0]*/ : (rounded_mantissa[size_mantissa])? (rounded_mantissa[size_mantissa : 1]) : (rounded_mantissa[size_mantissa-1 : 0]); //instantiate special_cases_mul_acc component special_cases_mul_acc #( .size_exception_field(size_exception_field), .zero(zero), .normal_number(normal_number), .infinity(infinity), .NaN(NaN)) special_cases_mul_acc_instance ( .sp_case_a_number(sp_case_a_number), .sp_case_b_number(sp_case_b_number), .sp_case_c_number(sp_case_c_number), .sp_case_result_o(sp_case_o)); special_cases_mul #( .size_exception_field(size_exception_field), .zero(zero), .normal_number(normal_number), .infinity(infinity), .NaN(NaN)) special_cases_mul_instance( .sp_case_a_number(sp_case_a_number), .sp_case_b_number(sp_case_b_number), .sp_case_result_o(sp_case_mul_result_o)); assign sp_case_result_o = conversion[0]? 2'd0 : conversion[1]? normal_number : sp_case_o; //set zero_flag in case of equal numbers assign zero_flag = ~(|(rounded_mantissa)); //compute resulted_sign sign_computation sign_computation_instance( .eff_op (eff_op), .s_a_number (s_c_number), .s_b_number (s_a_number ^ s_b_number), .a_greater_exponent (c_greater_exponent[size_exponent]), .b_greater_exponent (ab_greater_exponent[size_exponent]), .adder_mantissa_ovf (adder_mantissa[size_mul_mantissa]), .sign (sign_inter)); assign sign_res = conversion[0]? 1'b0 : conversion[1]? c_number_i[size_integer-1] : sign_inter; //((eff_op)? (!c_greater_exponent[size_exponent]? // (!ab_greater_exponent[size_exponent]? ~adder_mantissa[size_mul_mantissa+1] : s_c_number) : ~(s_b_number^s_a_number)) : s_c_number); assign final_mantissa = resulted_mantissa; assign final_exponent = resulted_exponent; assign resulting_number_o = (zero_flag)? {size{1'b0}} : ((!(|sp_case_a_number) || !(|sp_case_b_number)) & (~do_conversion))? {c_number_i[size-1 : size-size_exception_field], s_c_number, c_number_i[size-1-size_exception_field-1 : 0]} : ((!(|sp_case_c_number)) & (~do_conversion) )? (sub? {sp_case_mul_result_o, ~(s_a_number^s_b_number), e_ab_number[size_exponent-1 : 0], mul_mantissa} : {sp_case_mul_result_o, s_a_number^s_b_number, e_ab_number[size_exponent-1 : 0], mul_mantissa}) : {sp_case_result_o, sign_res, final_exponent, final_mantissa}; endmodule